Conventional Transmission Electron Microscopy (CTEM) understanding contrast of crystal defects

CNS

Florent Houdellier CEMES-CNRS, 29 rue jeanne marvig 31055 Toulouse and DGP-INSA,135 avenue de rangueil 31400 Toulouse

- Sample morphology (grain size, precipitate size, etc.)
- Crystal defects (dislocations, faults, grain boundaries, etc.)
- Crystalline symmetries (point and space groups)
- Crystalline and non-crystalline materials

Atomic scale ?

What is CTEM ?

What is conventional microscopy ? Structural characterization :

Diffraction contrast !

Example : what kind of informations are required to study dislocations in materials ?

local

(the core of the dislocations governs their mobility)

Nanometric scale : High resolution

Mesoscopic domain :

- Very fine structure (atomic scale)
- Not easy to use (surface-dependent)

Why CTEM ?

global (geometry and organisation)

Macroscopic region (SEM or **Optical methods**)

- Slip traces
- Slip plans
- Burgers vectors activated
- No local information

- Area observed : from $50 \mu m^2$ to $1 \mu m^2$

Why CTEM ?

• Magnification neither too small nor too large : x 10 000 to x 100 000

• Requires a standard microscope (not necessary coherent nor corrected)

Diffraction theory of perfect crystal

Kinematical theory Amplitude-Phase diagram Howie-Whelan approach to dynamical effect

([[]])

Atomic form factor

See Doyle-Turner or Weickenmeir-Kohl diffusion coefficients in International table of crystallographic

Diffraction by a periodic set of diffusion sites

$$B_i s^2 e^{-2\pi \overrightarrow{g} \cdot \overrightarrow{r}_i}$$

$$S_{\overrightarrow{K}} \qquad I_{\overrightarrow{g}} \approx |F_{\overrightarrow{g}}|^2 |S_{\overrightarrow{K}}|^2$$

$$u^{2} >$$

Introduction to electron diffraction theory : the Bragg law

The diffraction pattern can be deduced from the intersection of a sphere called the Ewald sphere with the reciprocal crystal lattice :

Introduction to electron diffraction theory : geometry of a diffraction pattern

Diffraction in a TEM and image formation : the Abbe theory of imaging

(EM)}

Selected area electron diffraction (SAED) : strength of the TEM

Selected area aperture

(I) Example of conventional diffraction analysis : mono vs poly / crystal

• The kikuchi lines (and the spot intensities) are « attached » to the sample tilt

([]]}

Kikuchi lines : zone axis pattern (ZAP)

 \approx

S

m

The rocking curve

Mapping of the rocking curves : the convergent beam electron diffraction pattern (CBED)

TOULOUSE

Shape transforms

([]]}

Huygens-Fresnel principle : spherical wave propagation

Huygens-Fresnel principle :

The secondary wave amplitude at the point P

is obtained by summing the amplitudes

of the spherical wavelets from a spherical wavefront of radius r.

(I) Incoming spherical wave :

$$\psi = A_Q \frac{e^{2\pi i k r}}{r}$$

(II) Huygens-Fresnel principle : from each point, emission of wavelets :

$$d\psi = K(\theta)\psi \frac{e^{2\pi i kR}}{R} dS \qquad K(\theta) = \frac{1 + \cos(\theta)}{2} \frac{1}{i\lambda} =$$

$$\Psi(P) = \iint_{S} d\psi = \iint_{S} K(\theta)\psi \frac{e^{2\pi i kR}}{R} d\xi$$

(III) Integration variable change due to wavefront geometry

$$dS = rd\chi 2\pi r \mathbf{sin}(\chi) \qquad R = r^2 = r^2 + (r + R_0)^2 - 2r(r + R_0)^2$$
$$dS = 2\pi \left(\frac{r}{(r + R_0)}\right) R dR$$

$$\psi(P) = \frac{2\pi\psi}{i\lambda(r+R_0)} \int_{R_0}^{R_{max}} A(\theta) e^{2\pi i kR} dR$$

$$\int_{R_0}^{\infty} A(\theta) e^{2\pi i kR} dR = \frac{1}{2} \int_{R_0}^{R_0 + \frac{\lambda}{2}} e^{2\pi i kR} dR = \frac{i}{2\pi k} e^{2\pi i kR_0} \psi(P) = A_Q \frac{e^2}{k}$$

For an incoming plane wave we have $(n \to \infty \implies \theta_n \to 90^\circ)$

Fresnel zones rules : plane wave propagation

$$\psi_n = (1 + \cos(\theta_n))(-1)^{n+1}e^{2\pi i k z}$$

+...+(
$$|\psi_{N-1} - \psi_{N-2}|) - |\psi_N|$$

$$|\psi_1| - |\psi_N|$$

:
$$\psi(P) = 2e^{2\pi i kz} - e^{2\pi i kz} = e^{2\pi i kz}$$

The secondary wavefront in *P* remains *a plane wave*

Application of Fresnel zones : Fresnel fringes

Evaluation of Fresnel integral using APD (Cornu's spiral) Converge to $\pm \left(\frac{1}{2}, \frac{1}{2}\right)$ as *s* moves from $0 \to \pm \infty$

$$\oint \phi(x, y) \propto \left[\left(\frac{1}{2} + i \frac{1}{2} \right) - \left(\overline{X} + i \overline{Y} \right) \right]$$

Application of Fresnel zones : Fresnel Fringes

• Let's consider an incoming plane wave ψ_0 on a crystal define by a thickness t

- Electrons wavelength : $\lambda = 3,7 \text{pm} \rightarrow (100 \text{keV})$
- Radius of the first Fresnel zone : $\rho_1 = \sqrt{R_0 \lambda}$

 \Rightarrow We want to estimate the contribution of the slice dz to $\psi_{\overrightarrow{g}}(P)$ (I) For $R_0 = 100$ nm we have $\rho_1 = 0.6$ nm

This means that only a column with a diameter of 1 - 2nm is contributing to the amplitude at the point P. We will only consider this first Fresnel zone.

• The method is therefore called the **column approximation**. (II)There are $\frac{dz}{dz}$ unit cells per unit area in an element of thickness dz. Thanks to Huygens-Fresnel Principe the contribution $d\psi_{\overrightarrow{g}}$ of this element is :

$$d\psi_{\overrightarrow{g}} = \psi_0 \frac{dz}{V_e} \iint F_{\overrightarrow{g}}(\theta) \frac{e^{2\pi i kR}}{R} dS = \psi_0 \frac{2\pi dz}{V_e} \int_{R_0}^R F_{\overrightarrow{g}}(\theta) e^{2\pi i kR} dR$$
$$K(\theta) = F_{\overrightarrow{g}}(\theta)$$

Diffraction intensity under column approximation

Integral estimation using APD : (III) To estimate the diffracted intensity $I_{\overrightarrow{g}}$ we simply have to integrate $d\psi_{\overrightarrow{g}}$ over the thickness Imaginary axis dzBecause of column approx \vec{s} and \vec{r} are collinear : $\vec{s} \cdot \vec{r} = sz$ $l\pi$ $e^{2\pi i k_0 t}$ $2\pi i sz dz$ $\psi_{\overrightarrow{g}}$ $\xi \rightarrow q$ $2\pi s$ $=2\pi sz$ ► Real axis $I_0 = 1 - I_{\overrightarrow{g}}$

$$R_{0} = t - z$$

$$|\psi_{0}| = 1$$

$$\psi_{\overrightarrow{g}} = \frac{i\pi}{\xi_{\overrightarrow{g}}} e^{2\pi i k_{0} t} \int_{0}^{t} e^{-2\pi i (\overrightarrow{g} + \overrightarrow{s}).\overrightarrow{r}}$$

$$\overrightarrow{k} = \overrightarrow{k}_{0} + \overrightarrow{g} + \overrightarrow{s}$$

(IV) We will now always estimate this Fresnel integral, and $I_{\overrightarrow{g}}$, using APD (phasor)

$$\bullet \qquad I_{\overrightarrow{g}} = \psi_{\overrightarrow{g}}\psi_{\overrightarrow{g}}^* = \frac{\pi^2}{\xi_{\overrightarrow{g}}^2} \frac{\sin^2(\pi ts)}{(\pi s)^2}$$

Going back to the diffracted intensities : the kinematical rocking curve ([]]]} $I_{\overrightarrow{g}} = \psi_{\overrightarrow{g}} \psi_{\overrightarrow{g}}^* = \frac{\pi^2 \operatorname{sin}^2(\pi ts)}{\xi_{\overrightarrow{g}}^2}$ CBED kinematical lines profile = rocking curve $s \doteq 0$

Introduction to dynamical theory

Kinematical approach :

only one interaction from each dz element

Dynamical approach :

Multiple interactions, from each dz element

Step by step derivation of Howie-Whelan equations : 2-beams dynamical theory

Let's consider the phase origin located in O. All the demonstration will previous results obtained using Huygens-Fresnel approach

A point will affect the incoming wave ψ_0 by the value $d\psi_{\overrightarrow{g}} = \frac{i\pi}{\xi} \psi_0 e^{2\pi i k R_0} dz$

note
$$q = \frac{a\pi}{\xi_{\overrightarrow{g}}}$$

 \rightarrow The ratio between the wave amplitude coming from OAfter crossing *B* is $\frac{|\psi(B)|}{|\psi(O)|} = iq$. Then after crossing *A* we have $\frac{|\psi(A)|}{|\psi(O)|} = iq_0$

(I) The wave starting from O and arriving in A is : $\psi_0(p, n)e^{2\pi i(\vec{k}_0 \cdot \vec{OA})}$

After crossing A we add the point contribution the wavefront becomes : $\psi_0(p,n)(1+iq_0)e^{2\pi i(\vec{k}_0.\vec{OA})}$

(II) The wave diffracted from I and arriving in A is : $\psi_{\overrightarrow{g}}(p+2,n)e^{2\pi i \overrightarrow{k}_{\overrightarrow{g}}}(\overrightarrow{HI}+\overrightarrow{IA})$

After crossing A the wavefront along \vec{k}_0 becomes : $iq\psi_{\overrightarrow{g}}(p+2,n)e^{2\pi i \overrightarrow{k}_{\overrightarrow{g}}.(\overrightarrow{HI}+\overrightarrow{IA})}$

And along \vec{k} we add the point contribution to the incoming wavefront $(1 + iq_0)\psi_{\overrightarrow{g}}(p + 2,n)e^{2\pi i \overrightarrow{k}_{\overrightarrow{g}}.(\overrightarrow{HI} + \overrightarrow{IA})}$

Step by step derivation of Howie-Whelan equations : 2-beams dynamical theory

$$\vec{A} = 2\pi \bar{k}_0 \cdot \overline{OA} = \frac{2\pi \bar{k}_0 d}{\sin(\theta)} = \delta$$

$$\vec{HI} + \vec{IA} = 2\pi \vec{k}_{\vec{g}} \cdot \vec{HI} + 2\pi \vec{k}_{\vec{g}} \cdot \vec{IA} = 2\pi \bar{k}_{\vec{g}} \cdot \vec{HI} + 2\pi \bar{k}_{\vec{g}} \cdot \vec{IA} = \phi + \delta$$

$$\begin{cases} \psi_0(p+1,n+1)e^{-i\delta} = (1+iq_0)\psi_0(p,n) + iq\psi_{\vec{g}}(p+2,n)e^{i\phi} \\ \psi_{\vec{g}}(p+1,n+1)e^{-i\delta} = (1+iq_0)\psi_{\vec{g}}(p+2,n)e^{i\phi} + iq\psi_0(p,n)e^{i\phi} \end{cases}$$

(III) We will now consider the Friedel Law : $\psi_{\overrightarrow{g}} = \psi_{-\overrightarrow{g}}$ and some first geometrical simplifications

$$+ \delta\theta \quad \sin(\delta\theta) \approx 0, \cos(\delta\theta) \approx 1 \quad e^{-i\delta} \approx 1$$

$$+ 2d\delta\theta\cos(\theta_B) = \lambda + 2ds \frac{\cos(\theta_B)}{g} = \lambda + 2d^2s\cos(\theta_B)$$

$$g = \frac{d}{a_B} \quad \clubsuit \quad \phi = \frac{2\pi}{\lambda} \left(\lambda + 2d^2s\sin(\theta_B)\frac{a_B}{d}\right) = 2\pi(1 + a_Bs) \quad \clubsuit \quad e^{i\phi} = e^{i\phi}$$

 $e^{i\phi}iq \approx iq$ $e^{i\phi}(1+iq_0) \approx 1+iq_0$ (IV) We will now do first linear approximation :

$$\psi_0(p+1,n+1) - \psi_0(p,n) = iq_0\psi_0(p,n) + iq\psi_{\overrightarrow{g}}(p+2,n)$$

$$\psi_{\overrightarrow{g}}(p+1,n+1) - \psi_{\overrightarrow{g}}(p+2,n) = i(q_0 + \phi)\psi_{\overrightarrow{g}}(p+2,n) + iq\psi_0(p,n)$$

Step by step derivation of Howie-Whelan equations : 2-beams dynamical theory

(V) Introducing differential operators thanks to Taylor development :

$$+1,n+1) - \psi_0(p,n) = \frac{\partial \psi_0}{\partial x}(x_{p+1} - x_p) + \frac{\partial \psi_0}{\partial z}(z_{n+1} - z_n)$$
$$p + 1,n+1) - \psi_{\overrightarrow{g}}(p+2,n) = \frac{\partial \psi_{\overrightarrow{g}}}{\partial x}(x_{p+1} - x_{p+2}) + \frac{\partial \psi_{\overrightarrow{g}}}{\partial z}(z_{n+1} - z_n)$$

(VI) Considering that the amplitude depends only on the variable z, the two equations become a first system of differential equations (column approximation) :

$$= \begin{cases} \frac{d\psi_0}{dz}(z_{n+1} - z_n) = iq_0\psi_0(p, n) + iq\psi_{\overrightarrow{g}}(p+2, n) \\ \frac{d\psi_{\overrightarrow{g}}}{dz}(z_{n+1} - z_n) = i(q_0 + \phi)\psi_{\overrightarrow{g}}(p+2, n) + iq\psi_0(p, n) \end{cases}$$

nembering:
$$z_{n+1} - z_n = a$$
 $\frac{q_0}{a} = \frac{\pi}{\xi_0}$ $\frac{q}{a} = \frac{\pi}{\xi_{\overrightarrow{g}}}$

 $\begin{cases} \frac{d\psi_0}{dz} = i\frac{\pi}{\xi_0}\psi_0 + i\frac{\pi}{\xi_{\overrightarrow{g}}}\psi_{\overrightarrow{g}} \\ \frac{d\psi_{\overrightarrow{g}}}{dz} = i\left(\frac{\pi}{\xi_0} + 2\pi s\right)\psi_{\overrightarrow{g}} + i\frac{\pi}{\xi_{\overrightarrow{g}}}\psi_0 \end{cases} \quad \sigma = \frac{\sqrt{2\pi}}{\sigma}$

 $1 + (s\xi_{\overrightarrow{g}})^2$

2 >

Diffracted intensities in 2-beams dynamical theory : the dynamical rocking curve

$$I_{\overline{g}} = \frac{\cos^{2}(\pi\sigma t) + \left(\frac{s}{\sigma}\right)^{2} \sin^{2}(\pi\sigma t)}{I_{\overline{g}}}$$

$$I_{\overline{g}} = \frac{\sin^{2}(\pi\sigma t)}{(\sigma\xi_{\overline{g}})^{2}}$$

$$I_{\overline{g}}(t, s)$$

(∰}

Comparison (again) between kinematical and dynamical rocking curves INSA cris

2 Diffraction contrast imaging in perfect crystal

DF-DF imaging Bend contours Thickness fringes

Bright field vs dark field imaging : diffraction contrast

B. With contrast aperture (bright field)

C. *With* contrast aperture (bright field)

Bright field vs dark field imaging : diffraction contrast

D. *With* contrast aperture (Dark field)

By selecting the diffracted beam we can observed A dark field contrast reversed from the BF.

$$C = \frac{|I_d - I_m|}{I_m}$$

Contrast C is optimum in dark field

]}

Bright field vs dark field imaging : diffraction contrast

Bright Field (BF)

Dark Field (DF)

Dark field imaging : important practical consideration

DF with aperture shift (not good)

DF with tilted illumination (good)

Thickness fringes : kinematical approach

({[]]}

Thickness fringes : kinematical approach including absorption

3 Diffraction theory of faulted crystal

- Let's consider an incoming plane wave $|\psi_0| = 1$ on a crystal define by a thickness t

Kinematical simulation of faulted crystal

• In the kinematical approximation, after Huygens-Fresnel, the diffracted wave will be given by :

$$\frac{i\pi}{z}\int_{0}^{t}e^{-2\pi i(\vec{g}+\vec{s})\cdot\vec{r}'}dz$$

• Consider now any crystal defect which shift the atomic sites by a fault vector

$$\vec{r}' \to \vec{r} + \overrightarrow{R}(z)$$

Because of column approximation : $\vec{s} \cdot \vec{r} = sz$ and $\vec{s} \cdot \vec{R} \approx 0$

$$\psi_{\overrightarrow{g}} = \frac{i\pi}{\xi_{\overrightarrow{g}}} \int_0^t e^{-2\pi i(sz+\overrightarrow{g},\overrightarrow{R(z)})} dz$$

• Usually we define the phase term : $\alpha(z) = 2\pi \overrightarrow{g} \cdot \overrightarrow{R}(z)$ = $\frac{i\pi}{\xi_{\overrightarrow{g}}} \int_{0}^{t} e^{-2\pi i s z} e^{-2\pi i \overrightarrow{g} \cdot \overrightarrow{R}(z)} dz$

$$\Psi_{\overrightarrow{g}} = \frac{i\pi}{\xi_{\overrightarrow{g}}} \int_0^t e^{-2\pi i s z} e^{-i\alpha(z)} dz$$

Application to stacking fault

In FCC for instance a stacking fault moves :

- *B* layer in the *C* position by applying the displacement vector : $\overrightarrow{R}(z) = \frac{a\{112\}}{6}$
- The stacking becomes : *ABCA* | *CABC*

 $2\pi \overrightarrow{g} \cdot \overrightarrow{R}(z) = 0 \Leftrightarrow -\frac{t}{2} \leq z \leq z_1$ $= \alpha \Leftrightarrow z_1 \leq z \leq \frac{l}{2}$

The stacking fault is horizontal and located at $t = t_1$ The phase shift is $\alpha = -\frac{2\pi}{3}$

• Let's go back to the kinematical expression of the diffracted wave :

Estimation of stacking fault diffraction contrast using APD : exercice

Consider sample thickness t = 30nm, with inclined stacking fault with SF vector $\vec{R} = \frac{1}{4}$ [110]

DF image with $\overrightarrow{g} = 200$ and s = 0.05 nm⁻¹

Use amplitude phase diagram (APD) to determine ratio of DF image intensities for the columns. Assume kinematical approximation valid.

Possible answers:

 $1 \to I(A) > I(B) > I(C)$ $2 \to I(A) = I(C) > I(B)$ $3 \rightarrow I(A) = I(C) = I(B)$

Hint: convert thickness change to fraction of circumference = -S

Estimation of stacking fault diffraction contrast using APD : exercice

Consider sample thickness t = 30nm, with inclined stacking fault with SF vector $\vec{R} = \frac{1}{4}$ [110]

3

DF image with $\overrightarrow{g} = -100$ and s = 0.05 nm⁻¹

 $1 \to I(C) > I(A); I(B) = 0$ $2 \to I(A) = I(C); I(B) = 0$ Possible answers: $3 \rightarrow I(C) > I(B); I(A) = 0$

Estimation of stacking fault diffraction contrast using APD : real cases

Various configuration :

Constant contrast

Invisible

Kinematical simulation of an inclined stacking fault

Kinematical vs dynamical theory in diffraction contrast

Interpreted as anomalous absorption of Bloch waves in dynamical 2 beams theory

Diffraction contrast Imaging in faulted crystal

BF-DF imaging vs weak beam Dislocations Stacking fault Antiphrase boundaries Grain boundaries etc.

Conventional observation of stacking fault

Same area of a Si sample imaged with two different diffraction vectors of the $\{220\}$ type

Phase shift $\alpha = 2\pi \cdot \overrightarrow{g} \cdot \overrightarrow{R} \neq 0$

Phase shift $\alpha = 2\pi . \overrightarrow{g} . \overrightarrow{R} = 0$

Conventional observation of Moiré fringes

$$\Psi_{\overrightarrow{g}} = \frac{i\pi}{\xi_{\overrightarrow{g}}} \int_0^{t_1} e^{-2\pi i s z} dz + \frac{i\pi}{\xi_{\overrightarrow{g}}} \int_{t_1}^{t_2} e^{-2\pi i s z} e^{-i\alpha(z)} dz$$

Conventional observation of Moiré fringes

([[]])

Conventional observation of grain boundaries

Conventional observation of antiphase boundaries

Fringes contrast : same interpretation as for stacking fault

Extracted from : P. Zhao, L. Feng, K. Nielsch, T.G. Woodcock, Microstructural defects in hot deformed and as-transformed τ-MnAl-C, Journal of Alloys and Compounds, Volume 852, 2021, 156998, https://doi.org/10.1016/j.jallcom.2020.156998.

$$\frac{1-2\nu}{2(1-\nu)}\ln(r) + \frac{\cos(2(\Phi-\gamma))}{4(1-\nu)} \bigg] \bigg) \quad \clubsuit$$

 b_e is the edge component of dislocation

$$\pi \overrightarrow{g}$$
. $R(z) \rightarrow \text{If } \overrightarrow{g}$. $\overrightarrow{b} = 0 \implies \alpha = 0$ and the dislocation is invisible

- The planes are bent around the core of the dislocation •
- On one side of the dislocation, the planes might be bent closer to the Bragg condition • \implies s is smaller) such that the intensity, $I_{\overrightarrow{g}}$ is higher than the background
- On the other side of the dislocation, the planes would be bent away from the • Bragg condition, therefore $I_{\overrightarrow{g}} \approx I_{background}$
- Dislocations parallel to the surface show uniform contrast, inclined dislocations • alternating contrast
- Reversing either \overrightarrow{g} or \overrightarrow{s} will reverse the position of the image of the dislocation relative to the dislocation core

([[]])

Conventional observation of dislocations

$$\psi_{\overrightarrow{g}} = \frac{i\pi}{\xi_{\overrightarrow{g}}} \int_{0}^{t} e^{-2\pi i s z} e^{-2\pi i \overrightarrow{g} \cdot \overrightarrow{R(z)}} dz$$

$$\psi_{\overrightarrow{g}} = \frac{i\pi}{\xi_{\overrightarrow{g}}} \int_{-z_1}^{z_2} \exp\left(-i\left(2\pi sz + n\arctan\left(\frac{z}{x}\right)\right)\right) dz$$

Typical values for metals (fcc) with
$$\vec{b} = \frac{1}{2}[110]$$

• If $\overrightarrow{g} = (1\overline{1}1) \implies \overrightarrow{g} \cdot \overrightarrow{b} = 0$ the dislocation is invisible

• If
$$\overrightarrow{g} = (111) \implies \overrightarrow{g} \cdot \overrightarrow{b} = 1$$

For
$$\overrightarrow{g} \cdot \overrightarrow{b} = 1$$
 the image width is $\Delta x_p \approx \frac{1}{2\pi s}$ and the image po
For example
• If $\overrightarrow{g} \cdot \overrightarrow{b} = 2 \implies \Delta x_p \approx \frac{1}{\pi s}, x_p = -\frac{1}{2\pi s}$ For $\overrightarrow{g} = 0$

Thus the pick width is such smaller and the peak much closer to the core for large values of s. This is the principe of weak beam imaging.

Caution : choose s carefully as $I_{\overrightarrow{g}} \propto \frac{1}{s^2}$. Furthermore kinematic approximation holds well for large s. When $s \to 0$ dynamical theory must be use

Diffraction contrast of dislocation : some order of magnitude

([]])

Weak beam imaging : $\overrightarrow{g} - n \overrightarrow{g}$ conditions

([]]}

Weak beam imaging :some examples

Characterization of dislocation using CTEM

Screw Dislocations in Si

Two BF images taken with different diffraction conditions

$$\cdot \overrightarrow{g} = 022$$

 $\cdot \overline{g} = 311$

→The dislocation marked A is invisible in (b)

Edge dislocations

Edge dislocations are not as straightforward Even if \overrightarrow{g} . $\overrightarrow{b} = 0$, then there might still be some component of displacement causing diffraction from the \overrightarrow{g} . $(\overrightarrow{b} \wedge \overrightarrow{L}) = 0$ term

([]]]}

Characterization of dislocation using CTEM : exercice

			Taken from A. Put to Mineral Science	nis Introduction s, 1992, CUP g=044		g=113		g=131		
			g=004		2 3 2		g=040			
\overrightarrow{g}	\overrightarrow{b}	$\frac{1}{2}$ [110]	$\frac{1}{2}$ [101]	$\frac{1}{2}[011]$	$\frac{1}{2}$ [1 $\bar{1}0$]	$\frac{1}{2}[10\overline{1}]$	$\frac{1}{2}[01\overline{1}]$	1	2	3
131		2	0	1	-1	1	2	INVIS	VIS.	VIS
040		2	0	2	-2	0	2	INVIS	VIS.	VIS
113		0	2	1	1	-1	-2	VIS.	INVIS	VIS
004		0	-2	-2	0	2	2	VIS.	INVIS	VIS
044		2	2	4	-2	-2	0	VIS.	VIS	INVIS

([]])

Characterization of dislocation using CTEM : solution

 $\overrightarrow{b}_1 = \frac{a}{2}[101]$ $\overrightarrow{b}_2 = \frac{a}{2}[110]$ $\overrightarrow{b}_3 = \frac{a}{2}[01\overline{1}]$

([]]}

Conventional observation of precipitates

Bright field

Dark Field

({**[**]]}

Understanding diffraction contrast in CTEM requires an understanding of how diffraction intensities are generated Diffraction Bright field

Conclusion

CNS

Thank you

Le calcul de l'intégrale double se découple en un produit de deux intégrales simples (théorème de Fubini)

 $\psi(M) = K(\theta)\psi_0 2\pi \int_{\rho=0}^{a} \frac{e^{-ik\sqrt{\rho^2 + z^2}}}{\sqrt{\rho^2 + z^2}} \rho d\rho d\theta = K(\theta)\psi_0 2z$

$$\int_{\theta=0}^{2\pi} \int_{\rho=0}^{a} \frac{e^{-ik\sqrt{\rho^2 + z^2}}}{\sqrt{\rho^2 + z^2}} \rho d\rho d\theta$$

$$2\pi \left[\frac{i}{k}e^{-ik\sqrt{\rho^2+z^2}}\right]_0^a$$