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What is geometrical optics ? What is an image ?  



Fermat and the principle of least time : a « causa sive ratio » for the refraction 
• Pierre de Fermat (1601-m. 1665)

« Synthèse pour les réfractions » (1662)

« Je reconnais premièrement avec vous la vérité de ce principe, que la nature agit toujours par les voies les plus courtes.  
Vous en déduisez très bien l’égalité des angles de réflexion et d’incidence »  

SeaBeach

Solution : 3

sin(i)
sin(i′�)

=
n′�

n



δL = δ∫
P2

P1

n(x, y, z)ds = 0 L = ∫
B

A (n(x, y, z) 1 + x′ �2 + y′ �2) dz

The idea behind the concept of Hamilton’s characteristic function
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Principle of optics

Foundations of geometrical optics (introduction) 
: Eikonal functions and aberration series 



L = n1d1 + n2d2 + n3d3 + . . .

https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_all.html?locale=es

 In optics time is the function that must be minimized.  
 Linked to the optical path length !   given by :L A

B

➡ From !  to !  all lengths !  are the sameA B L

Shape to remove �L4➡ What is geometrical optics? How do we make high-performance instruments ? 

L = L0 + L2 + L4 + . . . .
Axe optique Paraxial Aberrations

Sum of various polynomial functions :

Fermat's principle : consequences

https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_all.html?locale=es


Development of modern mathematical geometrical optics

• Johann Carl Friedrich Gauß (1777-m. 1855)
« Dioptrische Untersuchungen (1856) »

L = L0 + L2

Axe optique Paraxial

Definition of the stigmatic imaging condition:
linear approximation of the optical length

Q1

A0

P0

B1

B0

Q0
A1

P1

Geometrically a perfect imaging process is defined by :
The optical length any curve in the object space is equal to the optical length of it’s image 

It corresponds to a linear transformation

…
by way of introduction to the optical method … what is a serie expansion ? Why is it the « multi-purpose » tool of all physicists ?

+ +



y′�para

The paraxial approximation
LA = L(0)

A + L(2)
A

∂L(2)
A

∂s′�y
= − n′�y′�para ∼ A(z)uy + B

 Object plane (Field=! )y0

Measuring plane

Field 1.0

Field 0.7

Field 0.0

⃗s

Gaussian 
Image plane

Optical system

z

y′�para

Change ! , ray position changes linearly wrt to the 
starting angle ( i.e. ! )

z
sy ∼ uy

x′�para

uy

uy ux



‣  !  : principal planes 

‣  !  : intersection surfaces/optical axis 

‣  !  : focal planes  

‣  !  : focal distances 

‣ !  : radii of curvature of surfaces 

‣ !  : thickness !  

‣ !  : refraction index

P

S

F

f

r

d SS′�

n

Description of the optical system under the paraxial approximation : the cardinal planes



Description of the optical system under the paraxial approximation : the fundamental rays
➡ The marginal ray defines the maximum aperture angle. Intersection with optic axis : defines the Gaussian image planes

➡ The principal ray defines the maximum field. Intersection with optic axis : defines the pupil planes

➡ Under paraxial approximation, any ray (define by it’s angle !  and field height ! ) can be written using linear combinaison  
between marginal (aperture) and principal (field) rays :

α y

Marginal ray �
 h(z)

Principal  
Ray �g(z)

Principal 
Ray 

u(z) = αh(z) + yg(z)



Mathematical optics and the design of high-performance instruments
• Karl Siegmund Schwarzschild (1873-m. 1916)

« Untersuchungen zur geometrischen  (1905) »

Developed a Hamiltonian approach
to the calculation of Seidel aberrations. 
He builds on Bruns' work and develops

his own characteristic function (or eikonal).

• Philipp Ludwig von Seidel (1821-m. 1896)
« Über die Entwicklung der Glieder 3ter Ordnung welche 
den Weg eines ausserhalb der Ebene der Axe gelegene
 Lichtstrahles durch ein System brechender Medien
 bestimmen (1856) »

Perturbations of Gaussian optics : 
 5 primary geometrical aberrations �  and 2 chromatics �   L4 L2(λ)

• Heinrich Bruns (1848-m. 1919)
« Das Eikonal (1895) »



Primary aberrations or Seidel aberrations
y′� = m . y + Δy′� = −

1
n′�

∂LA

∂s′�y
Δy′� = −

1
n′�

∂L(4)
A

∂s′�y

L(4)
A (sx, sy, s′�x, s′�y) ∝ As4

x + Bs4
y + Cs2

x s2
y + Ds2

x s2
y + . . .

uy = arcsin(sy) rp

⃗s
sz

sy

(L(4)
A )sph (L(4)

A )cma (L(4)
A )ptz (L(4)

A )astg

L(4)
A (x, y, rp, θ) ∝ Sr4

p + Cr3
pycos(θ) + Pr2

p y2 + Ay2r2
pcos2(θ) + Dy4

(L(4)
A )dist

➡change of variables !  (field, aperture)  

➡or !  (field, aperture)

sx, sy, s′�x, s′�y → x, y, ux, uy

sx, sy, s′�x, s′�y → x, y, rp, θ



Δy′�sph

 Object plane (Field = ! )y0

Field 1.0

Field 0.7

Field 0.0

⃗s

Gaussian 
Image plane

Optical system

In the Gaussian plane, change Spherical aberration contribution

Δy′�sph = −
1
n′�

∂(L(4)
A )sph

∂s′�y
∼ Su3

y
Δy′�

Seidel aberrations : primary (third order) spherical aberration

uy

Δx′�sph
uy ux

uy ux

uy ux



 Object plane (Field = ! )y0

Field 1.0

Field 0.7

Field 0.0

⃗s

Gaussian 
Image plane

Optical system

In the Gaussian plane, change Coma aberration contribution

Δy′�cma = −
1
n′�

∂(L(4)
A )cma

∂s′�y
∼ Cu2

y y1
0

Δy′�

Seidel aberrations : primary coma aberration

Δy′�cma

uy

Δx′�cma
uy ux

uy ux

uy ux



 Object plane (Field = ! )y0

Field 1.0

Field 0.7

Field 0.0

⃗s

Gaussian 
Image plane

Optical system

In the Gaussian plane, change field curvature aberration 
contribution

Δy′�ptz = −
1
n′�

∂(L(4)
A )ptz

∂s′�y
∼ Pu1

y y2
0

Δy′�

Seidel aberrations : primary field curvature aberration (Petzval curvature)

Δy′�ptz

uy

Δx′�ptz
uy ux

uy ux

uy ux



 Object plane (Field = ! )y0

Field 1.0

Field 0.7

Field 0.0

⃗s

Gaussian 
Image plane

Optical system

In the Gaussian plane, change field astigmatism aberration 
contribution

Δy′�ast = −
1
n′�

∂(L(4)
A )ast

∂s′�y
∼ A(u1

y x2
0 + u1

x x0y0)
Δy′�

Seidel aberrations : primary field astigmatism aberration

Δy′�ast

uy

Δx′�astuy ux

uy ux

uy ux



Seidel aberrations : primary distorsion aberration

 Object plane (Field = ! )y0
⃗s

Gaussian 
Image plane

Optical system

Δy′�dist = −
1
n′�

∂(L(4)
A )dist

∂s′�y
∼ Dy3

0

Δy′�

uy

Paraxial position 

Paraxial position 



Aberrations series expansion 
➡ Representation using a 2-dimensional Taylor series expansion: field of view �  and aperture angle �  or pupil plane coordinate �y uy (r, θ)

Paraxial (linear)
Primary aberrations  
Seidel aberrations 

Secondary 
aberrations 

➡ The sum of the exponents must be constant according to the order of the aberration considered



Going back to the quasi-real situation (paraxial + Seidel aberrations) …

y′� x′�

uy ux

y′� = ypara + Δy′� = −
1
n′�

∂LA

∂s′�y



Various kind of aberrations representations

Wavefront aberrations !  = differences between radius of Principal ray wavefront and the real wavefront in the pupil plane :  W

W = LP′�Q′� = LOQ′� − LOP′� ≈ LA − L(2)
A = L(4)

A

Object 
plane 

Gaussian Image plane

Transverses aberrations !Δy′ �

Longitudinal  
aberrations !Δl′�

Wavefront aberrations !W

Optical 
system

Pupil plane !(ux, uy) → (xp, yp) → (rp, θ)

Paraxial sphere  
(radius !  = optical length of the principal ray)R

O

P′�

Q′ �

O′ �

O′�′�

Transverse aberrations !  are then simply derived from wavefront aberration by differentiate it relatively to pupil coordinate (i.e. the aperture angles)Δy′ �

Δy′� = − R .
∂W(xp, yp)

∂yp



Seidel primary aberrations : wavefront vs transverse aberrations

W = S . r4
p

Δy′� = S . r3
pcos(φp)

Δx′� = S . r3
psin(φp)

A

B

C

D

E
A. Spherical aberration 
B.Coma 
C.Astigmatism 
D.Petzval curvature 
E.Distorsion 

Δx′� = C . y . r2
psin(2φp)

Δy′� = C . y . r2
p(2 + cos(2φp))

W = C . yr3
pcos(φp)

Symmetry with respect to ….
Periodicity …

Δy′� = A . y2 . rpcos(φp)

Δx′� = 0W = A . y2 . r2
pcos2(φp)

Δy′� = P . y2 . rpcos(φp)

Δx′� = P . y2 . rpsin(φp)W = P . y2 . r2
p

Axis

Plane

Two planes

Axis

One plane

Point

Line

2 lines

Point

Line

Δy′� = D . y3

Δx = 0W = D . y3rpcos(φp)

Const

1

2

Const

1

1Const

2 1

Const



Mathematical optics and the design of high-performance instruments

• Carl Friedrich Zeiss (1816-m. 1888)
« Zeiss company » : collaboration with Abbe

Zeiss microscope (1879)
with Abbe optics

New illumination system
developed by Abbe

• Ernst Karl Abbe (1840-m. 1905)
« Beiträge zur Theorie des Mikroskops
 und der mikroskopischen Wahrnehmung (1873) »

Resolution limit 
for optical instruments 

Development of corrected optics

Spots diagram 
 (square size ! ) 30μm

λ = 486nm 587nm 656nm

FoV = 0∘

16,5∘

33∘

45∘

Today: example of a smartphone lens



Diffraction limit
Corrected microscopy: how far can we go?

After a while, the points on the object are no longer 
points in the image ...

Why ? And how does this affect the resolution?

Here is a ‘resolution test’ 
object

Point spread function due to 
diffraction Final image of the object

Abbe's formula : Δx = k .
λ

NA



2
Introduction to  

Variational  
mechanics

General history, introduction  
to main concepts and  
application to charged particles  
in static electromagnetic fields



The revolution of the principle of least action: variational mechanics

« Application de la méthode dans le 
mémoire précédent  à la solution de
différents problèmes de la dynamique » (1744)

« Recherche sur la libération 
de la Lune» (1780)

• Joseph Louis de Lagrange  (1736-m. 1813)
First part of the history : Second part of the history :

The red action is 

the smallest

Smin

S1

S2

• William Rowan Hamilton  (1805-m. 1865)

The action : 
 energy balance on a trajectory



Newtonian, Lagrangian and Hamiltonian approaches to physics

Σ ⃗F = m ⃗a δS = δ∫
t1

t0

ℒ(x, y, z, ·x, ·y, ·z, t)dt = 0
ℒ = K − V

➡Characteristic function in mechanics : the action �S

➡ What is the best approach to solve this complex problem?

The newton approach ? 
Possible but …  

heavy and dirty calculus

The variational approach ? 
100% equivalent but well 
adapted mathematically 

➡ Same as in optics with the time 



Optical/mechanical equivalence: a simple example



Discovery of electrons and the beginning of electron optics
• Joseph John Thomson (1856- m. 1940)

« Cathode rays (1897) » 
Discovery of electrons. Trajectories of these particles 

deflected by an electric or magnetic field.

• Louis de Broglie (1892-m. 1987)
« Recherches sur la théorie des quanta  (1905) »

λ =
h

mv

Δx ∝
λ

NA

Abbe's formula

De Broglie’s wavelength of an electron

Acceleration (� )keV Wavelength (� )pm

Potential  ϕ1 Potential  ϕ2 < ϕ1

Analogy with the refraction of light

Electrons
Electric field zone

sin(i)
sin(i′�)

=
Φ2

Φ1

i

i′�



Variational methods to study charged particles trajectories 

ℒ = K − V
Integral picture of classical mechanics :  

definition of action �S
Lagrangian !L

Canonical impulsion

⃗p =
∂ℒ
∂ ⃗v

= m ⃗v + Q ⃗A H( ⃗r, ⃗p , t) = ⃗p . ⃗v − ℒ( ⃗r, ⃗v , t)ℒ = mrc2 (1 − 1 − (v2/c2)) + Q ( ⃗v . ⃗A − U)

Lagrangian of a charged particle !  in an EM field !Q ( ⃗A , U) Hamiltonian !  :  
Legendre transformation of !

H
L

∂ℒ
∂ ⃗r

−
d
dt

∂ℒ
∂ ⃗v

= 0

After part integration we find a differential 
 formulation of the least action principle : 

Euler-Lagrange equations 

Strictly equivalent to the 
 Newton's equations of dynamic

K
Kinetic energy Potential energy

V
δS = δ∫

t1

t0

ℒ(x, y, z, ·x, ·y, ·z, t)dt = 0

H = K + QU = E➡ Considering a static field ℒ = const Energy conservation principle

L =
S̃
q0

= ∫
z

z0

μdz ⟹ μ =
1
q0

⃗p
d ⃗r
dz

Least action principle in static field equivalent to Fermat’s principe in conventional optic considering !   μ =
1
q0

⃗p
d ⃗r
dz

Considering a static field the variational principle for a charged particle is written as follows:

�  is new the characteristic  
function �  in CPO !!

S̃/q0
LS̃ = S + E(t − t0) = ∫

z

z0

ℒ̃dz,



δL = δ∫
z

z0
(n(x, y, z) 1 + x′ �2 + y′�2) dz = 0

The characteristic function of light and of charged particles : optical index

δL = δ∫
z

z0

1
q0

⃗p
d ⃗r
dz

dz = 0 μ =
1
q0 (m ⃗v ⋅

d ⃗r
dz

− e ⃗A ⋅
d ⃗r
dz ) = μe + μm

μ(x, y, z)

For electrons



3
Introduction to 

 charged  
particle optics

Field and action expansion 
Definition of the optical index for  
charged particles



μ =
1
q0 (m ⃗v ⋅

d ⃗r
dz

− e ⃗A ⋅
d ⃗r
dz ) = μe + μm

w = x + iy

Analysis of the optical index structure

y x

zStraight Optical axis

We have to generate a localized zone of potential: the lens for charged particles

Three electrodes : ground/voltage/ground Map of the electrostatic potential �ϕ(r, z) will act as a converging lens for the charged particles

⟹ μm = −
e
q0

(Az + Re(Aw′�))

Magneto-static optical index

A = Ax + iAy

⃗A
Vector potential

ϕ ⟹ μe =
ϕ*
Φ*0

(w′�w′� + 1)

Electrostatic optical index

Scalar potential



Back to LAP: development of charged particle optics

• Walter Glaser (1906-m. 1960)
« Zur Bildfehlertheorie des Elektronenmikroskops » (1935).

First development of geometrical electron optics: based on the principle 
of least action

Fermat’s 
principle

L =
S̃
q0

= ∫
z

z0

μdz ⟹ μ =
1
q0

⃗p
d ⃗r
dz

The optical index 
for charged 

Particles

Reminder of the characteristic function �  for a charged particle in a static fieldL

L = L0 + L2 + L4 + . . . .
Decomposition of the characteristic function n into several parts: paraxial + 

aberrations : same work as Schwarzschild for conventional optics



Field decomposition for straight optic axis system

x

y

r θ

w = x + iy = reiθ

ϕ(r, θ, z) =
∞

∑
ν=0

ϕν(r, θ, z)

ν = 1 ν = 2 ν = 3 ν = 4

(I) Azimuthal Fourier decomposition : only in straight optics axis

Only axial potential �  and it’s derivatives relative to �  are needed !!Φ0(z) z

Φ′� =
∂Φ
∂z

(II) Taylor expansion of each Fourier component �  and knowing that Laplace equations should be fulfilled for each Fourier component �ϕν(r, θ, z) Δϕν = 0

➡Example of the rotationally symmetric component �ϕ0(r, z)

ϕ0(r, z) = Φ0(z) − Φ′�′ �0(z) ×
r2

4
+ Φ[4]

0 (z) ×
r4

64
− Φ[6]

0 (z) ×
r6

2304
+ − . . .

๏  Notation

ϕ(r, θ, z) =
∞

∑
ν=0⏟

 Fourier

∞

∑
λ=0⏟

 Taylor

(−1)λ × ν! × r2λ+ν

4λ × λ! × (ν + λ)!
× [Φ[2λ]

ν;r (z) × cos(ν × θ) + Φ[2λ]
ν;i (z) × sin(ν × θ)]

ϕ =
∞

∑
ν=0

∞

∑
λ=0

(−1)λ ν!
λ!(λ + ν)! ( ww

4 )
λ

Re(Φ[2λ]
ν (z)wν)

In complex coordinate system �w = x + iy
A sum of polynomial functions. 



Rotationally symmetric lens

z

ϕ0(r, z) = Φ0(z) − Φ′�′�0(z) ×
r2

4
+ Φ[4]

0 (z) ×
r4

64
− Φ[6]

0 (z) ×
r6

2304
+ − . . .

MagnetostaticElectrostatic

Pole pieces

Yoke Coil

Gap

Pole pieces

Br

Bz

r z

r
z

ψ0(r, z) = Ψ0(z) − Ψ′ �′�0(z) ×
r2

4
+ Ψ[4]

0 (z) ×
r4

64
− Ψ[6]

0 (z) ×
r6

2304
+ − . . .

⃗B = ⃗∇ ∧ ⃗A = − ⃗∇ . ψ( ⃗r ) ψν =
∞

∑
λ=0

( − )λ ν!
λ!(λ + ν)! ( ww

4 )
λ

Re(Ψ[2λ]
ν (z)wν)

Ψ′�0(z) = Bz(0,z)



• Ernst August Friedrich Ruska (1906-m. 1988)
« Das Elektronenmikroskop  (1932) »

Development of the transmission electron microscope

Main applications of rotational symmetric field
Magnetostatic

• Pierre Grivet (1911-m. 1992)
« Electrostatic Electron Microscope (1941) »

Electrostatic

Electrostatic lenses in a TEM

Behind the development of the FIB (focused ion beam)



μm = −
e
q0

(Az + Re(Aw′�))μe =
ϕ*
Φ*0

(w′�w′� + 1)

➡ We have to start from the optical indices:

Electrostatic case Magnetostatic case

Optical index expansion

μ(e) =
∞

∑
n=0

μ(n)
(e)

Index expansion into a sum 
polynomial functions of power !  

of the variables ! ,! ,!  et !
n

w w w′� w′�

μ(m) =
∞

∑
n=0

μ(n)
(m)

Index expansion into a sum 
polynomial functions of power !  

of the variables ! ,! ,!  et !
n

w w w′� w′�

ϕ =
∞

∑
ν=0

∞

∑
λ=0

…
ψ =

∞

∑
ν=0

∞

∑
λ=0

…

μ(n) = μ(n)
e + μ(n)

m
Keep polynomial functions of power !  n ≤ 2 Paraxial optics with  !  L = L0 + L2

Contribution of polynomial functions of power !n > 2 Aberrations  !  L4 + …



4
Paraxial charged 
 particle optics

Second order optical index 
Paraxial equations  
Electrostatic vs magnetostatic standard optics 



μ(0)
e =

Φ*0 (z)
Φ*0 (z0)

μ(2)
e =

1
2

Φ*0 (z)
Φ*0 (z0)

Re w′�w′�−
ww

Φ*0 (z) ( γ0Φ′�′�0(z)
4

+
Φ1(z)Φ1(z)

8Φ*0 (z) ) +
w2

Φ*0 (z) (γ0Φ2(z) −
Φ2

1(z)
8Φ*0 (z) )μ(1)

e =
γ0

2 Φ*0 (z0)Φ*0 (z)
Re (Φ1(z)w)

Electrostatic case

Paraxial optics: "  n ≤ 2

μ(0)
m = 0 μ(1)

m = −
e
q0

Im(Ψ1w) μ(2)
m =

e
q0

Im ( ww
4

Ψ′�′�0(z) +
1
2

Ψ′�0(z)ww′�− Ψ2(z)w2)

Magnetostatic case

Effect on paraxial :

Rotationally symmetric field !ν = 0 Dipolar field !ν = 1 Quadrupolar field !ν = 2
No paraxial action : 

Hexapolar ! , octopolar ! , …ν = 3 ν = 4



Paraxial straight axis optics : "  n ≤ 2
1. To determine the trajectories we simply have to resolve the least action principle applied to the characteristic function !  δL = 0

d
dz

∂(μ(0) + μ(1) + μ(2))
∂w′�

−
∂(μ(0) + μ(1) + μ(2))

∂w
= 0

d
dz

∂μ
∂w′�

−
∂μ
∂w

= 02. Lagrange showed that this is equivalent to resolve the set of Euler-Lagrange differential equations :

In paraxial, these equations become :

Rotationally symmetric field !ν = 0We find again the contribution of Fourier components : Dipolar field !ν = 1 Quadrupolar field !ν = 2

Φ1 + iv0Ψ1 = 0

The Wien condition state that if an electrostatic dipolar field is applied in the system,  
a magneto static dipolar field must be present to have a straight optic axis (! ). The relation between the two magnitudes should fulfill w = 0

After inserting all the previous polynomial functions extracted from the field expansion we found « naturally »  
the paraxial equation of any charged particle optics system with straight optical axis :

w′�′� +
γ0

2Φ*0
(Φ′ �0 + iv0Ψ′�0)w′� +

γ0

4Φ*0 (Φ′�′�0 + iv0Ψ′�′�0 +
Φ1Φ1

2γ0Φ*0 ) w −
γ0

Φ*0 (Φ2 + iv0Ψ2 −
Φ2

1

8γ0Φ*0 ) w =
γ0

2Φ*0
(Φ1 + iv0Ψ1)

w = x + iy

v0 =
1
γ0

2eΦ*0 (z)
me

๏  Notation



Dipolar field and Wien Filter as mass separator
• Dipolar field tilt the optical axis relatively : use to align the beam (known as deflectors) 

Φ1

• An example of a Wien filter by students : fabrication and calculation

Their realization Resolution of paraxial equation

Wien filter !  Φ1, Ψ1Einzel lens !Φ0

Results in a Ga FIB (separation of isotopes)
Φ1, Ψ1 = 0

Φ1, Ψ1 ≠ 0

Other application of EXB Wien filter in EM :  
monochromators (Thermofisher and Jeol)

Mass selection of the primary ions in FIB

Φ1 + iv0Ψ1 = 0

• Application of Wien condition : the Wien filter 



Other applications of dipolar fields in curved axis optics : the sectors
Beware : Equations are slightly different as the field expansion cannot be performed using !  variables.  

You need to define new variables relative to the curved optic axis but the general idea remains the same.
w = x + iy

See Rose’s book to have the detail of the new field expansion, paraxial equations and aberrations 
Magnetostatic sectorElectrostatic sector

+V

−V

General overview

• Focalisation and dispersion along one direction

• Nothing along the perpendicular direction

Application : analyser

XPS instruments

Application in EM : monochromator

+Ψ
−Ψ ⃗B

• Focalisation and dispersion along one direction

• Nothing along the perpendicular direction

General overview Application: mass analyser 
(for example SIMS)

Application in EM : monochromator and Spectrometer (Gatan, Nion, CEOS, …)



Rotationally symmetric lens : paraxial properties

w′�′� +
γ0

2Φ*0
(Φ′ �0 + iv0Ψ′�0)w′� +

γ0

4Φ*0 (Φ′�′�0 + iv0Ψ′�′�0 +
Φ1Φ1

2γ0Φ*0 ) w −
γ0

Φ*0 (Φ2 + iv0Ψ2 −
Φ2

1

8γ0Φ*0 ) w =
γ0

2Φ*0
(Φ1 + iv0Ψ1)

⟹ χ = −
e

8me ∫
z

z0

Ψ′�0

Φ*0
dzu′�′� +

γ0Φ′ �0

2Φ*0
u′� +

γ0

4Φ*0 (Φ′ �′�0 +
e

2me
Ψ′�0

2) u = 0Second-order differential equation (with varying factors)

We rewrite the complex coordinate system : !   defining the amplitude of the trajectory !  and the phase !  known as Larmor rotation w(z) = u(z)eiχ u(z) χ

The solution for any ray is written as a simple linear combination of the two fundamental solutions : ! .  
If !  and !  then we have  : !

u = c1uα + c2uπ
u0 = u(z0) u′�0 = u′�(z0) u(z) = u′ �0uα(z) + u0uπ(z)

Let’s start from the general paraxial equations … 

w′�′� +
γ0

2Φ*0
(Φ′�0 + iv0Ψ′ �0)w′� +

γ0

4Φ*0
(Φ′ �′�0 + iv0Ψ′�′�0) w = 0

We assume ! . The paraxial equation is simplified with only !  components contributionΦ1 = Ψ1 = Φ2 = Ψ2 = 0 ν = 0

uα\uα(z0) = 0,u′�α(z0) = 1
uπ\uπ(z0) = 1,u′ �π(z0) = 0 uα

uπ

Marginal ray/Axial ray
Principal ray/Chief Ray/Field Ray

Magnification

There are 2 independent solutions :
Initial conditions :



5. Resolve paraxial equation  
using R-K algorithm

Slopes used by the classical Runge-Kutta method

w′�′� +
γ0

2Φ*0
(Φ′�0 + iv0Ψ′ �0)w′� +

γ0

4Φ*0
(Φ′ �′�0 + iv0Ψ′�′ �0) w = 0

Paraxial properties of electrostatic lenses : the Einzel lens
Let’s first consider a pure electrostatic system with rotational symmetry.

We have ! , and we can extract two equations as !Ψ0 = 0 w(z) = x(z) + iy(z)

1.Define geometry and voltages  
2.Calculate potential distribution

3. Extract axial potential !  
4. Compute ! , !

Φ0(z)
Φ′�0(z) Φ′�′�

0(z)

x′�′� +
1
2

Φ′�0

Φ*O
x′� +

1
4

Φ′�′�0

Φ*O
x = 0 y′�′� +

1
2

Φ′�0

Φ*O
y′� +

1
4

Φ′�′�0

Φ*O
y = 0

6. Draw the 2 fundamental rays from  
  which any ray can be obtained

1
f

≈
3
16 ∫

zi

z0

Φ′�2
0 (z)

Φ0(z)2
dz > 0

Focal distance (if ! )Φ0(z0) = Φ0(zi)

➡ No diverging lens



Simulation of an electrostatic column

Two main optical modes simulated :

High resolution

High current

Source Condenser lens Aperture Objective lens

General overview of the FIB column

ScanningFaraday cup

Experimental spots

4μm



➡ Paraxial equation for magnetic system with rotational symmetry  !(Ψ0 ≠ 0,Φ0 = 0)

u′�′� +
γ0

4Φ*0 ( e
2me

Ψ′�0
2) u = 0

w(z) = x(z) + iy(z) = u(z)eiχ

Paraxial properties of magnetostatic lenses : the electromagnetic lens

u′�′� + k2(z)u = 0

1
f

=
Q2

8K0m ∫
zi

z0

B2(z)dz > 0

Simplified paraxial equation

Larmor rotation

Focal distance

χ = −
e

8me ∫
z

z0

Ψ′�0(z)

Φ*0
dz = −

1
2

Q
2K0m ∫

z

z0

B(z)dz

➡ No diverging lens

1.Define geometry and voltages  
2.Calculate potential distribution 
3.Extract axial field !Ψ′�0(z) = B(z)

4. Resolve paraxial equation using R-K algorithm 
5. Plot trajectories in !  space.  
‣  Due to Larmor rotation not easy to visualise

(x, y, z)

5. Plot of the two paraxial solutions (1 lens in that case) in !(u, z)

Marginal ray

Principal ray

uαuπ

uαuπ



Simulation of a complete magnetostatic TEM column
 Marginal ray of a double lens system in !(u, z)

uα

The I2TEM instrument in Toulouse :

Paraxial and real tracing simulations :



Paraxial properties of electrostatic lenses : overview of immersion system

U = 0 U < 0 U = 0

K = 1000eV K = 1000eV

B. Einzel (unipotential) lens

K = 1000eV

U = 0V U = − 10kV

K = 11keV

A. Immersion lens

1
f

≈
3
16 ( Φ0(z0)

Φ0(zi) )
( 1

4 )
∫

zi

z0

Φ′�2
0 (z)

Φ0(z)2
dz

μ(0)
e =

Φ*0 (z)
Φ*0 (z0)

≠ 1

Energy change between  
object and image area 
 

μ(0)
e =

Φ*0 (z)
Φ*0 (z0)

= 1

1
f

≈
3
16 ∫

zi

z0

Φ′�2
0 (z)

Φ0(z)2
dz > 0

Energy not change between  
object and image area 
 



The electron source : overview of this particular immersion system 

V1
Extracting 

anode

Accelerating/focusing 
anode

Tip

V0

Real tracing method  
and not paraxial

Potential calculationMetallic filament

Tungsten 
ɸ= 4.5eV 

2800K

LaB6 
ɸ= 2.5eV 

2000K 

Real cross-over

HT

Whenelt 
(Bias voltage)

Filament

Accelerating 
anode

Electron optical configuration

Thermionic electron source (very intense, low brightness) Cold Field Emission source (CFE) (small intensity, high brightness)



Tip + suppressor

4000 V

0V 0V

The Schottky field emission (SFE) electron source

-250 V

General overview Optical simulation 

The SFE assembly



Quadrupole lens : paraxial properties

w′�′� +
γ0

2Φ*0
(Φ′�0 + iv0Ψ′�0)w′� +

γ0

4Φ*0 (Φ′�′�0 + iv0Ψ′�′�0 +
Φ1Φ1

2γ0Φ*0 ) w −
γ0

Φ*0 (Φ2 + iv0Ψ2 −
Φ2

1

8γ0Φ*0 ) w =
γ0

2Φ*0
(Φ1 + iv0Ψ1)

w(z) = x(z) + iy(z)

Let’s start from the general paraxial equations … 

x′�′� + k2x = 0

y′�′� − k2y = 0
k = kE = (eΦ2)/(Kr2

0)

k = kM = (2eΨ2)/(pr2
0)

We assume ! . The paraxial equation is simplified with only the contribution of the !  componentΦ1 = Ψ1 = Φ0 = Ψ0 = 0 ν = 2

A. Electrostatic quadrupole

B. Magnetostatic quadrupole

x(z) = x0cos(kz) +
a0

k
sin(kz)

a(z) = − x0ksin(kz) + a0cos(kz)

y(z) = y0cosh(kz) +
a0

k
sinh(kz)

b(z) = y0ksinh(kz) + b0cosh(kz)

Periodic solutions along �  :x

Diverging solutions along �  :yk(z) = const
๏  Notation

a = tanα = dx/dz = px /pz

b = tanβ = dy/dz = py /pz



Correction of deviation from rotation symmetry : the stigmator 

y

x
z

A. Electrostatic quadrupole

B. Magnetostatic quadrupole

Paraxial action of quadrupoles are used to compensate small paraxial focusing error 
along perpendicular directions observed in rotational system (electrostatic or magnetic) 

Often called « Axial astigmatism » (not an aberration coming from !  terms of the eikonal)L(4) + …



Stigmatic imaging with quadrupoles multiplets

•Quadrupoles doublet : anamorphic focusing • Quadrupoles quadruplet (Russian quadruplet) : 
non-anamorphic focusing (like round lens)



x

z

y

z

Electron Energy Loss Spectrometer : EELS

Post-column spectrometer

Secteur

Quadripôles

• Along the dispersion direction of the sector

•Along the direction perpendicular to the sector dispersion direction

Secteur



E

x

Q1, Q3 and Q4 actions

Q2 effect
E

x

Sector

Sector

Electron Energy Loss Spectrometer : EELS



Paraxial properties : to remember

Electrostatic Magnetostatic
• Round and quadrupole can focus 
• Action depends only on the beam ratio charge/energy 
• Time of flight can be used to separate mass (TOF SIMS) 
• Energy can change between object/image 
• Electrodes quality important

• Round and quadrupole can focus 
• Action depends on beam impulsion/charge (mass dependent) 
• Can be used to separate mass, not adapted to focus heavy ions 
• Magnetic material properties important (hysteresis, saturation,…)

Φ1 + iv0Ψ1 = 0
• Mix : Wien condition

Used to filter velocity !v0

What about the aberrations ?



• Otto Scherzer (1909-m. 1982)
« Uber einige Fehler von Elektronenlinsen» (1936).

Effect of fourth order terms " of the expansion : Scherzer’s theoremL4

After Glaser’s work on aberrations expansion arrive …

He shows that if we have a system
define by static rotationally fields :

L = L0 + L2 + L4 + . . . .
> 0

Ψ0 ≠ 0,Φ0 ≠ 0

This is known as Scherzer’s theorem

Aberration terms of the eikonal
 expansion are unavoidable



Scherzer shows that octopole field �  can be used to invert the sign of spherical aberration ν = 4

• Otto Scherzer (1909-m. 1982)
« Sphärische und chromatische Korrektur von Elektronen-Linsen » (1947).

Cancel fourth order terms " of the expansion : Scherzer’s propositionsL4

Ψ3, Φ3 Ψ4, Φ4

Hexapole Octopole



• Harald Rose (1935-)
« Outline of a spherically corrected semiaplanatic
 medium-voltage transmission electron microscope» (1990).

Design of the first TEM and STEM spherical aberration corrected optics (semiaplanatic)

Students of Pr. Rose have the created 
the CEOS GmbH company

Currently: instrument optically limited by �  and not yet the diffraction limitL6

Cancel fourth order terms " of the expansion  : Rose’s propositionL4



5
Aberrations in  

Charged particles  
optics

High order optical index 
Wavefront aberrations  
Scherzer theorem  
Correction of spherical aberration 



Aberrations (" ) : "  Seidel or primary geometric aberrationsn > 2 n = 4

• Rotationnaly symetric field !  induce : 
- Aperture aberration (spherical) 
- Fields aberrations : 

‣ Coma,  
‣ Petzval curvature,  
‣ Field astigmatism 
‣ Distorsion 

Ψ0, Φ0

➡ Below, the indices obtained have been expressed for the round contributions !  and quadripolar !  only …Ψ0, Φ0 Ψ2

• After Scherzer, we can show that !  and !  can be used to cancel out the aperture aberration caused by !  (see Pr. Rose’s book for details) Ψ3, Φ3 Ψ4, Φ4 Ψ0, Φ0

μ(4)
m = −

e
q0

Re {w′ �3
0 w′�0 [ i

12
Ψ′�′�2u4

α +
i
6

Ψ′�2u3
α (u′�α + iχ′�uα)] e−2iχ

+w3
0w0 [ i

12
Ψ′�′�2u4

π +
i
6

Ψ′�2u3
π (u′ �π + iχ′�uπ)] e−2iχ

+w′�0w3
0 [ i

12
Ψ′�′�2uαu3

π +
i
6

Ψ′�2u3
π (u′�α + iχ′�uα)] e−2iχ

+w0w′ �3
0 [ i

12
Ψ′�′�2u3

αuπ +
i
6

Ψ′�2u3
α (u′ �π + iχ′�uπ)] e−2iχ

+w′�0w′ �2
0 w0 [ i

4
Ψ′�′�2u3

αuπ +
i
2

Ψ′�2u2
αuπ (u′�α + iχ′�uα)] e−2iχ

+w0w′ �0w2
0 [ i

4
Ψ′�′�2uαu3

π +
i
2

Ψ′�2uαu2
π (u′ �π + iχ′�uπ)] e−2iχ

+w′�0w′�0w2
0 [ i

4
Ψ′�′�0u2

αu2
π +

i
2

Ψ′�2uαu2
π (u′�α + iχ′�uα)] e−2iχ

+w0w′ �2
0 w0 [ i

4
Ψ′�′�2u2

αu2
π +

i
2

Ψ′�2u2
αuπ (u′ �π + iχ′�uπ)] e−2iχ

+w′ �2
0 w′ �2

0 [−
i

16
Ψ′�′�′�0 uα (u2

αu′�α + iχ′�u3
α)] + w2

0w2
0 [−

i
16

Ψ′�′�′�0 uπ (u2
πu′�π + iχ′�u3

π)]
+w2

0w′ �2
0 [−

i
16

Ψ′�′�′�0 uα (u′�αu2
π + iχ′�uαu2

π)] + w′�2
0 w2

0 [−
i

16
Ψ′�′�′�0 uπ (u2

αu′�π + iχ′�u2
αuπ)]

+w0w′�0w′ �2
0 [−

i
16

Ψ′�′�′�0 (uα (u2
αu′�π + iχ′�u2

αuπ) + uπ (u2
αu′�α + iχ′�u3

α))]
+w0w2

0w′�0 [−
i

16
Ψ′�′�′�0 (uπ (u′�αu2

π + iχ′�uαu2
π) + uα (u2

πu′�π + iχ′�u3
π))]

+w′�2
0 w′�0w0 [−

i
8

Ψ′�′�′�0 uα (uαu′�αuπ + iχ′�u2
αuπ)] + w2

0 w0w′�0 [−
i
8

Ψ′�′�′�0 uπ (uαuπu′�π + iχ′�uαu2
π)]

w0w0w′�0w′�0 [−
i
8

Ψ′�′�′�0 (uα (uαuπu′�π + iχ′�uαu2
π) + uπ (uαu′�αuπ + iχ′�u2

αuπ))]

μ(4)
e =

1
8

Φ*0
Φ*0 (z0)

Re w′ �2
0 w′ �2

0 [−(u′�2
α + χ′ �2u2

α)2 −
γ0

2Φ*0
Φ′�′�0u2

α (u′ �2
α + χ′ �2uα)

+
1

16Φ*0 (γ0Φ′�′�′�′�0 −
Φ′ �′ �2

0

Φ*0 ) u4
α

+w′�2
0 w′�0w0 [−2 (u′ �2

α + χ′ �2u2
α) (u′�αu′�π + χ′�2uαuπ − iχ′�(u′�αuπ − uαu′�π)) −

γ0

2Φ*0
Φ′�′�0 (u2

α (u′�αu′�π

+χ′�2uαuπ − iχ′�(u′�αuπ − uαu′�π)) + uαuπ (u′ �2
α + χ′�2u2

α)) +
1

8Φ*0 (γ0Φ′�′�′�′�0 −
Φ′ �′�2

0

Φ*0 ) u3
αuπ

+w′ �2
0 w2

0 [−(u′�αu′�π + χ′�2uαuπ − iχ′�(u′�αuπ − uαu′�π))2 −
γ0

2Φ*0
Φ′�′�0uαuπ (u′�αu′�π + χ′�2uαuπ

−iχ′�(u′�αuπ − uαu′�π)) −
1

16Φ*0 (γ0Φ′�′�′�′�0 −
Φ′ �′ �2

0

Φ*0 ) u2
αu2

π

+w′�0w′�0w0w0 [−2 (u′�2
α + χ′ �2u2

α) (u′�2
π + χ′ �2u2

π) − 2 (u′�αu′�π + χ′ �2uαuπ + iχ′�(u′�αuπ − uαu′�π)) (u′�αu′�π

+χ′�2uαuπ − iχ′�(u′�αuπ − uαu′�π)) −
γ0

2Φ*0
Φ′�′�0 (u2

α (u′�2
π + χ′�2u2

π) + u2
π (u′ �2

α + χ′ �2u2
α)

+uαuπ (u′�αu′�π + χ′�2uαuπ)) +
1

4Φ*0 (γ0Φ′�′�′�′�0 −
Φ′ �′ �2

0

Φ*0 ) u2
αu2

π

+w′�0w0w2
0 [−2 (u′ �2

π + χ′ �2u2
π) (u′�αu′�π + χ′�2uαuπ − iχ′�(u′�αuπ − uαu′�π)) −

γ0

2Φ*0
Φ′�′�0 (u2

π (u′�αu′�π

+χ′ �2uαuπ − iχ′ �(u′�αuπ − uαu′�π)) + uαuπ (u′�2
π + χ′ �2u2

π)) +
1

8Φ*0 (γ0Φ′�′�′�′�0 −
Φ′ �′ �2

0

Φ*0 ) uαu3
π

+w2
0 w2

0 −(u′�2
π + χ′�2u2

π)2 −
γ0

2Φ*0
Φ′�′�0u2

π (u′�2
π + χ′ �2u2

π) +
1

16Φ*0 (γ0Φ′�′�′�′�0 −
Φ′ �′ �2

0

Φ*0 ) u4
π

4th order magneto static index 4th order electrostatic index

• Quadrupolar component !  induces : 
- Aperture aberrations (star and rosette) 
- Fields aberrations (many comas terms, …)

Ψ2



A0 =
ie
q0 ∫

z

z0

uαΨ1e−iχdz

Cdf = ∫
z

z0

Φ*0
Φ*0 (z0) (u′�2

α + χ′�2u2
α −

γ0

4Φ*0
Φ′�′�0u2

α) +
eχ′�
q0

Ψ′�0u2
α dz

A1 =
2ie
q0 ∫

z

z0

Ψ2u2
αe−2iχdz

B2 = −
ie

4q0 ∫
z

z0

dz [ 1
2

Ψ′�′�1u3
α + Ψ1 (u2

αu′�α + iχ′�u3
α)] e−iχ

A2 =
3ie
q0 ∫

z

z0

Ψ3u3
αe−3iχdz

Cs =
1
2 ∫

z

z0

dz
Φ*0

Φ*0 (z0) (−(u′ �2
α + χ′�2u2

α)2 −
γ0

2Φ*0
Φ′�′�0u2

α (u′ �2
α + χ′ �2u2

α)

+
1
16 (γ0Φ′�′�′�′�0 −

Φ′�′ �2
0

Φ*0 ) u4
α −

e
2q0

Ψ′�′�′�0 χ′�u4
α

S3 = −
ie
q0 ∫

z

z0

dz [ Ψ′�′�2

6
u4

α +
Ψ′�2
3 (u′�α + iχ′ �uα) u3

α] e−2iχ

• Beam tilt

• Defocus

• Axial astigmatism (ordre 1)

• Axial Coma

• Axial astigmatism(ordre 2)

• Spherical aberration

• Star

Equations intégrales des coefficients 

Wavefront aberrations: the most common aperture terms
➡ Object point (no field) in the optical axis (such as a SEM, TEM, STEM or FIB source). We then assume !w0 = 0,w0 = 0

W =
S̃
q0

= ∫
z

z0

μdz ⟹ Re [A0w′�0 +
1
2

Cdf |w′�0 |2 +
1
2

A1w′ �2
0 + B2 |w′�0 |2 w′�0 +

1
3

A2w′ �3
0 +

1
4

Cs |w′ �0 |4 + S3 |w′�0 |2 w′ �2
0 ]

➡ We obtain a sum of polynomials functions of different orders depending on the variables of the entrance pupil (! ). Each function is weighted by an aberration coefficient :w′�0, w′�0

Polynomial sum gives the final wavefront



6
Overview of the  

general method to 
study a CPO element 



How does it work in practice? evaluation of the terms in the field
➡ The first step is to calculate and map the potential (electrostatic or magnetostatic or both) in the volume of your optical element in 3D.

➡ To do this, we need to solve the Laplace equation (differential equation) starting from the boundary conditions: 
Dirichlet (fixed potential on the surface of the electrodes) or Neumann (field !  fixed on the surface of the electrodes, !  being the normal to the surface)⃗E . ⃗n ⃗n

Δϕ( ⃗r) = 0 Δψ( ⃗r) = 0

There are 3 main strategies for solving these differential equations:

Cut the volume into squares. 
Calculate derivatives by difference 
Finite difference method (FDM)

Cut the volume into elements. 
Minimise the EM energy density 

 in each of the volumes.  
Finite Element Method (FEM)

Cut the boundaries into elements. 
Use the potentials/fields of the elements 

to find the potential in the volume 
using Green's functions 

Boundary element method (BEM)

➡ Let's take the example of calculating the field of a magnetic quadrupole using FEM (COMSOL multiphysics software).
Definition of geometry and boundary conditions Meshing of different volumes Calculation and mapping of ! ⃗B



Φν =
2 − δoν

ν! ( ∂νϕ
∂w̄ν )

w=0
∈ ℂ

➡ Once the potential !  has been determined in 3D, we can extract the various multipolar components !  using !  derivatives :ϕ, ψ Φν, Ψν ϕ, ψ

➡ We can then solve the paraxial equation : w′�′� +
γ0

2Φ*0
(Φ′�0 + iv0Ψ′�0)w′� +

γ0

4Φ*0 (Φ′�′�0 + iv0Ψ′�′�0 +
Φ1Φ1

2γ0Φ*0 ) w −
γ0

Φ*0 (Φ2 + iv0Ψ2 −
Φ2

1

8γ0Φ*0 ) w =
γ0

2ϕ*0
(Φ1 + iv0Ψ1)

➡ We then plot the two paraxial solutions (marginal, principal) 

➡ To achieve this, numerical integration methods of the Runge-Kutta 4 type are generally used.

p 93

➡ Calculation of !  derivatives along the !  axis and then integrating the integral equations 
 to determine aberrations (integration using numerical methods such as Simpson's method).

Φν, Ψν z
Cs =

1
2 ∫

z

z0

dz
Φ*0

Φ*0 (z0) (−(u′�2
α + χ′�2u2

α)2 −
γ0

2Φ*0
Φ′�′�0u2

α (u′�2
α + χ′ �2u2

α) +
1
16 (γ0Φ′�′�′�′�0 −

Φ′�′�2
0

Φ*0 ) u4
α −

e
2q0

Ψ′�′�′�0 χ′�u4
α

How does it work in practice? evaluation of the terms in the field



1. Calculation of the EM field and determination of the on-axis field (FEM for EOD) :

Computation with asymptotic object
V*            =   1.00000000E+00 V
U             =   1.00000000E+00 eV
image #       =    1 (asymptotic)
z object      =   -5.0000000     mm
z image       =      60.0000     mm
rotation      =    0.0000000     rad
                   0.0000000     deg
dir. magnif.  =    -6.216739
ang. magnif.  =   -0.1608560
V* object     =   1.00000000E+00 V
V* image      =   1.00000000E+00 V
1-M*Ma*sqrt(p(zi)/p(zo))      =  -5.29420952E-12
fproj         =    9.0820777     mm
zproj         =    3.5390932     mm

Aberration coefficients related to object
 axial spherical aber.:   9.0529E+01              mm
 iso,aniso coma length:   8.9721E+00,  0.0000E+00
 field curvature:         1.1784E+00              1/mm
 iso,aniso astigmatism:   2.5496E-01,  0.0000E+00 1/mm
 iso,aniso distortion:    4.6112E-02,  0.0000E+00 1/mm^2
 axial chromatic:         1.2484E+02              mm
 iso,aniso chromatic:     6.6222E+00,  0.0000E+00

Aberration coefficients for aperture
Aperture position at z=     0.0000000E+00 mm
  |ra| =   1.1462E+01, |rb| =   1.0872E+00

 axial spherical aber.:   9.0529E+01              mm
 iso,aniso coma length:  -8.2012E+00,  0.0000E+00
 field curvature:         1.1053E+00              1/mm
 iso,aniso astigmatism:   2.1840E-01,  0.0000E+00 1/mm
 iso,aniso distortion:   -1.4315E-02,  0.0000E+00 1/mm^2
 axial chromatic:         1.2484E+02              mm
 iso,aniso chromatic:    -5.2188E+00,  0.0000E+00

3. Paraxial properties + aberrations

2. Paraxial solutions: marginal + principal (Runge-Kutta)

Marg
inal

Principal

How does it work in practice? evaluation of the terms in the field
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Introduction to main 

 aberration  
corrector solutions

Quadrupole-octopole solution 
Hexapole solution 



z
y

x

+

+

++
− −

−−

y

How can we correct aberrations ? The Scherzer move

• Otto Scherzer (1909-m. 1982)
« Sphärische und chromatische Korrektur von Elektronen-Linsen » (1947).

Combinaison of !  (for paraxial) and !  for spherical aberration correction Φ2, Ψ2 Φ4, Ψ4



Quadrupole and octupole Cs corrector

Quadropole/octupole correction

Qpol and Opol Action

Qpol

Opol

Qpol representation in geometrical optic

mardi 29 novembre 11

Q1 Q-O 1 Q-O 2 Q2

Objective lens

Source image

plane

Q1

Q-O 1 Q-O 2

Q2O3

Q : Quadrupole
O : Octopole
Q-O : Superimposed quadrupole-Octopole fields

Quadrupole-Octopole association

The quadrupoles/octopoles solution



Marginal rayPrincipal ray

Q1
Q2
Q3
O1
Q4
Q5
Q6
Q7
O2
Q8
Q9
Q10
Q11
O3

Objective lens

Q12

Probe corrector

from NION 

Q13
Q14
Q15

(xz)(yz)
Q = Quadrupole
O = Octopole

STEM-HAADF corrected image NION dedicated STEM

Location of the corrector

" Modern Qpol/Opol corrector



Long hexapole

effect in !  AND a small !  (red)r2 r3

L

Hexapole spherical aberration

η =
γ0

Φ*0

e
2me

Cs = − 6 |ηΨ3 |2 L3f 4
0 < 0

๏  Notation

The long hexapole solution

match all optic axes of the single elements, the 12-pole
elements, and the round lenses.

In the first feasibility stage of the project, the aberration
corrector was installed on a test bench to demonstrate
spherical aberration correction ~Haider et al., 1995!. The
test setup consisted of a modified scanning electron micro-
scope with the whole corrector incorporated into the speci-
men chamber and a CCD camera coupled to a scintillator
on a viewing port beneath the specimen chamber. A small
electron probe was focused on the scintillator, and through
scanning the electron beam on circles with varying diam-
eter, the ray displacements induced by the aberration correc-
tor could be observed. With this procedure, the single
corrector elements were trimmed and a good agreement of
the electron optic properties with theory was shown.

In the second stage of the project, the aberration correc-
tor was adapted to a commercial Philips CM 200 FEG ST
~Haider et al., 1995, 1998a!. The lower pole piece of the
objective lens was modified to gain space for the first
transfer lens of the corrector, and the vacuum system of the
microscope was adapted to maintain high vacuum in the
specimen area. Computer-controlled power supplies driving
the currents through the various corrector elements were
set up to provide a relative stability of around 10!5. In
addition, a so-called adapter lens was added between the
aberration corrector and projector lenses of the microscope
to maintain a parallel beam path within the corrector and
to enable the operator to use the microscope controls as

usual. Through integration of the aberration corrector, the
chromatic aberration coefficient of the corrected micro-
scope increased from a value of 1.3 mm for the uncorrected
instrument to 1.7 mm. The resulting small deterioration of
the information limit was compensated by decreasing the
energy spread of the source to 0.7 eV FWHM, measured

Figure 3. Distortion of a ray bundle through a hexapole field,
with a view along the optical axis. The poles are marked by plus
and minus signs, the rays before and after deflection by empty and
filled circles, respectively.

Figure 4. Operation modes of a double-hexapole corrector. The
two elements in the center denote round lenses; the two elements
to the left and right denote hexapole fields. A: Hexapoles switched
off: A pair of rays, entering from the left, leaves the device un-
deflected, with a magnification of !1. B: Short Hexapole field: A
pair of rays leaves the device undeflected, because the deflections
of the two hexapole fields cancel. C: Long hexapole field: A pair of
rays leaves the device with a pure divergence, because the two
hexapole deflections cancel and the two divergences add up.

196 Markus LentzenHexapole action (filled circle)

Short hexapole

effect in !  (black)r2
r

−r

• Vernon D. Beck (Albert Crewe’s group in Chicago)
« A hexapole spherical aberration corrector» (1978).
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~Haider et al., 1995, 1998a!. The lower pole piece of the
objective lens was modified to gain space for the first
transfer lens of the corrector, and the vacuum system of the
microscope was adapted to maintain high vacuum in the
specimen area. Computer-controlled power supplies driving
the currents through the various corrector elements were
set up to provide a relative stability of around 10!5. In
addition, a so-called adapter lens was added between the
aberration corrector and projector lenses of the microscope
to maintain a parallel beam path within the corrector and
to enable the operator to use the microscope controls as

usual. Through integration of the aberration corrector, the
chromatic aberration coefficient of the corrected micro-
scope increased from a value of 1.3 mm for the uncorrected
instrument to 1.7 mm. The resulting small deterioration of
the information limit was compensated by decreasing the
energy spread of the source to 0.7 eV FWHM, measured

Figure 3. Distortion of a ray bundle through a hexapole field,
with a view along the optical axis. The poles are marked by plus
and minus signs, the rays before and after deflection by empty and
filled circles, respectively.

Figure 4. Operation modes of a double-hexapole corrector. The
two elements in the center denote round lenses; the two elements
to the left and right denote hexapole fields. A: Hexapoles switched
off: A pair of rays, entering from the left, leaves the device un-
deflected, with a magnification of !1. B: Short Hexapole field: A
pair of rays leaves the device undeflected, because the deflections
of the two hexapole fields cancel. C: Long hexapole field: A pair of
rays leaves the device with a pure divergence, because the two
hexapole deflections cancel and the two divergences add up.

196 Markus Lentzen Hexapole correction

Corrector off

Short hexapoles

Long hexapoles

using an electron energy-loss spectrometer, due to reduc-
tion of the temperature of the field emission tip by 100 K.
Figure 5 illustrates the integration of the double-hexapole
corrector, its transfer lenses, and the adapter lens between
the objective lens and the projector system of the microscope.

ABERRATION MEASUREMENT AND
CORRECTOR ALIGNMENT

The double-hexapole aberration corrector provides a num-
ber of ways to compensate for the aberrations of the whole
imaging system of the microscope, in particular the objec-
tive lens, through the excitation of deflectors, lenses, and the
various coils of the 12-poles. The corresponding currents
can be adjusted within wide limits, and the actual current
settings are dependent on precise aberration measurement
~Uhlemann & Haider, 1998!.

The measurement is carried out by recording a Zemlin
tableau of diffractograms ~Zemlin et al., 1978; Typke &
Dierksen, 1995! from an amorphous specimen area. Through
a series of diffractograms with intentional illumination tilts,
information on the true aberrations of the imaging system
is collected by measuring the individual induced first-order
aberrations of defocus and twofold astigmatism. The lens
defocus is set to a certain underfocus prior to the measure-
ment to generate Thon rings, which are then compared,
diffractogram by diffractogram, with a database of Thon
ring patterns for a wide range of defocus and twofold
astigmatism ~Uhlemann & Haider, 1998!. The measured set
of induced defocus and twofold astigmatism enters, to-
gether with the known illumination tilts, a set of linear
equations for the desired true lens aberrations. Finally, the

solution for the true lens aberrations is translated via a
calibration table to lens current values for the individual
corrector elements ~Uhlemann & Haider, 1998!. The whole
measurement procedure runs on a separate computer driv-
ing the camera and the illumination system of the micro-
scope via remote control. The microscope operator finally
decides on the basis of the displayed aberration analysis to
correct the individual aberrations via push buttons. An
additional feature of the control software is a push button
for small intentional changes of the third-order spherical
aberration.

The guide for the operator about which aberrations
must be corrected and which aberrations are unimportant
is the p/4 criterion: To keep the wave aberration, that is, the
deviation from a wanted reference, within bounds, the
magnitude of each single lens aberration should not cause a
phase change of larger than p/4 at the information limit of
the instrument ~see, e.g., the table in Uhlemann & Haider,
1998!. It is appreciated that this rule is only approximate
and may not reflect the state of the whole aberration func-
tion, which is the sum of all individual aberration contribu-
tions: On the one hand, single aberrations of the same
symmetry violating the p/4 criterion may cancel favorably
if they have different sign, such as a small positive third-
order spherical aberration and a small underfocus, or a
small positive twofold astigmatism and a small negative
third-order star aberration with the same azimuth. On the
other hand, such aberrations might well add up to exceed
jointly the p/4 phase change at the information limit. To
aid the operator and to give an overview of the state of the
whole aberration function, the corresponding phase plate is
displayed by the control software as a contour map together
with the p/4 contour.

CONTRAST TRANSFER AND NEW
IMAGING MODES

In traditional high-resolution electron microscopy, the fixed
large value of the third-order spherical aberration imposes
limits to the contrast transfer of thin objects. For modern
midvoltage microscopes, the Scherzer point resolution is
lower than the information limit, which is determined by
the temporal coherence of the electron source. At Lichte’s
defocus of least confusion, contrast reversals still occur,
making high-resolution structure interpretation difficult,
and at the minimum phase-contrast setting, the defocus
aberration and the spherical aberration do not cancel prop-
erly at higher spatial frequencies.

With the added freedom of variable spherical aberra-
tion, the above three important imaging modes can be
optimized ~Lentzen et al., 2002!. For perfect aberration
correction, zero defocus, and zero spherical aberration, the
phase contrast of a thin object vanishes. Because the aberra-
tion function is zero, its gradient and therefore all ray

Figure 5. Integration of a double-hexapole corrector into a trans-
mission electron microscope. The device, comprising the hexapole
elements H1, H2 and the doublet of round lenses, T2, is inserted
between the objective lens O and the projector system P of the
microscope. A doublet of round lenses, T1, is used to image the
coma-free point of the objective lens into the first hexapole plane.
An additional lens A is used to adapt the whole ray path to the
projector system. The illumination system, I, of the microscope is
unchanged.

Progress in Aberration-Corrected HRTEM 197Adaptation to an imaging TEM objective

Wavefront representationThird-order action of the hexapole corrector

The semiaplanatic double hexapoles solution
• Harald Rose (1935-m. ?)

« Outline of a spherically corrected semiaplanatic
 medium-voltage transmission electron microscope» (1990).



Hpol1

Hpol2

TL1

TL2

0. 5 nm

0. 5 nm

0.5 nm

0.5 nm

The semiaplanatic double hexapoles solution
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 symplectic relations 
in CPO

Canonical equations of Hamilton 
Optics as a canonical transformation  
Symplectic geometry and  
relations between coefficients due  
to symplecticity 

 



Geometrical optics as a canonical transformation

δS =
n

∑
i=1

∫
B

A (δpi
·ri + piδ ·ri −

∂H(ri, pi, t)
∂pi

δpi −
∂H(ri, pi, t)

∂ri
δri) dt = 0

The LAP can be rewritten in the Hamiltonian form :  

⃗p =
∂ℒ

∂ ⃗· ⃗r
Canonical momentum :

H( ⃗r, ⃗p , t) = ⃗p . ⃗v − ℒ( ⃗r, ⃗v , t)Hamiltonian : 

δS = δ∫
t1

t0

ℒ( ⃗r, · ⃗r, t)dt = 0LAP :

dpi

dt
= −

∂H(ri, pi, t)
∂ri

dri

dt
=

∂H(ri, pi, t)
∂piAfter integration by parts we find the two  

canonical Hamilton’s equation of motion  
(they simply replace the Euler-Lagrange  
equations which are not canonical)

dri

dt
= {ri, H}

dpi

dt
= {pi, H}

df
dt

= {f, H} +
∂f
∂t

๏  Notation
The Poisson’s bracket

Geometric operation which conserve Poisson’s bracket are symplectic transformation  

(ri, pi) → (Ri(r, p, t), Pi(r, p, t))

{f, g}(ri,pi) {f, g}Ri,Pi

Optical system : 
Canonical transformation

{f, g}(ri,pi) = {f, g}Ri,Pi

Must conserve  
Poisson’s brackets :

(ri, pi)
(Ri(r, p, t), Pi(r, p, t))

Canonial base  
In object space

Canonial base  
In image space

{ri, pj} = δij
{ri, rj} = 0
{pi, pj} = 0

The Poisson’s bracket 
rules of canonical basis



Beam PropagationBeam Propagation

Phase-Space mapping of a beam profile : Emittance diagram

Px

Emittance evolution in an optical system : example

Geometrical optics as a canonical transformation : "t → z
Using !  as time, it’s better to define the canonical transformation which transform !  in two separate 2D planes z (x, px) → (X(x, px, z), PX(x, px, z))

X1 = X(z1)X0 = X(z0)

Phase-space position vector  
in the plane !z1

Phase-space position vector  
in the plane !z0

We define the matrix known as phase-space vector : 
X(z) = (x(z), px(z), y(z), py(z), E, t(z))



|J | = 1J̃ΓJ = Γ JΓJ̃ = Γ

The symplectic transformation is define by the following metric 
relation for each phase-space vector :

Aka Symplectic relations

Geometric operation which conserve Poisson’s bracket are symplectic transformation  

Canonical geometrical optics : the symplectic relations

Where !  is the Jacobian matrix of the phase space variables 
Between two phase-space « time » !  and !  (object and image)

J
z0 z1

Γ =

0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

J =

∂x1/∂x0 ∂x1/∂px0 ∂x1/∂y0 ∂x1/∂py0 ∂x1/∂K0 0
∂px1/∂x0 ∂px1/∂px0 ∂px1/∂y0 ∂px1/∂py0 ∂px1/∂K0 0
∂y1/∂x0 ∂y1/∂px0 ∂y1/∂y0 ∂y1/∂py0 ∂y1/∂K0 0
∂py1/∂x0 ∂py1/∂px0 ∂py1/∂y0 ∂py1/∂py0 ∂py1/∂K0 0

0 0 0 0 1 0
∂t1/∂x0 ∂t1/∂px0 ∂t1/∂y0 ∂t1/∂py0 ∂t1/∂K0 1

๏  Notation

This gives us the symplectic relationships 
 (“intertwining”) between the paraxial and aberrations coefficients

Field !y

Angle !u

Small  
aperture

Medium 
aperture Large  

Aperture

Example of the simplest symplectic relation :  
linear magnification versus angular magnification  

known as Helmholtz-Lagrange relation



Symplectic relations taking care of non linear coefficients

More than 100 relations up to third order coefficients …

(x |a) = ∂x(z)/∂a0

(b |xx) = (1/2!)(∂2b(z)/∂x2
0)

(T |aa) = −
pref

1

Kref
0

(x |aδ)Ma

An example of useful symplectic relation in the TOF-SIMS technique  

๏  Notation
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Bibliotherapy

Conventional optics

Charged particles optics
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