
What is an image?

Matthew Bryan
CEA-Leti, Grenoble, France
matthew.bryan@cea.fr
GitHub: @matbryan52 / microscopy-images-qem

Slides: matbryan52.github.io/microscopy-images-qem

mailto:matthew.bryan@cea.fr
https://github.com/matbryan52
https://github.com/matbryan52/microscopy-images-qem
https://matbryan52.github.io/microscopy-images-qem/

Who I am

Matthew Bryan

@matbryan52 on GitHub

Research Software Engineer

  Grenoble   Alps

Background:

fluids + engineering
image processing

computer vision

Not really a Microscopist!

Developer on the project

 ↞     Slides: matbryan52.github.io/microscopy-images-qem 2

https://github.com/matbryan52
https://libertem.github.io/LiberTEM/
https://libertem.github.io/LiberTEM/
https://matbryan52.github.io/microscopy-images-qem/

CEA-PFNC

 ↞     Slides: matbryan52.github.io/microscopy-images-qem 3

https://www.minatec.org/en/research/minatec-dedicated-research-platforms/nanocharacterization-platform-pfnc/
https://matbryan52.github.io/microscopy-images-qem/

Content

Images

Digital Images

Visualisation

Signals
Geometry

Filtering

Segmentation

Enhancement

Alignment
Summary

 ↞     Slides: matbryan52.github.io/microscopy-images-qem 4

https://matbryan52.github.io/microscopy-images-qem/

Images and Photographs

krvarshney.github.io

 ⇤ ↞ 5

https://krvarshney.github.io/

Images

In optics, an Image is a plane with a one-to-
one mapping between ray origin points and
ray destinations

All rays leaving one point on an object
arrive at the same point in the image

Recording the rays on this plane will give a
spatially correct representation of the
object

Of course, this becomes much more
complex when the optical system is
imperfect, or an object has depth!

phydemo.app

 ⇤ ↞ 6

https://phydemo.app/ray-optics/
https://github.com/ricktu288/ray-optics
https://phydemo.app/ray-optics

photomacrography.net

Analogue images - Film

Recording light in chemical reactions

Light- (or electron-) sensitive coatings that
transform when exposed

Sensitivity determined by (chemical)
reaction rate (temperature, wavelength
etc.)

Resolution determined by average
particle size - randomly distributed!

In practice film is extremely densely
coated

Film grain

 ⇤ ↞ 7

https://www.photomacrography.net/forum/viewtopic.php?t=26857
https://en.wikipedia.org/wiki/Film_grain

Analogue images with plants

Any light-reacting chemistry could be used to record a photograph, even photosynthesis!

YouTube @AppliedScience

 ⇤ ↞ 8

https://www.youtube.com/watch?v=-qETedzsFIE

Digital images

Recording images with numbers

Convert local light intensity to an
electrical signal, then digitize it

Sensors have physical limits, noise etc,
so our digitization is always imperfect

At the most basic, a digital image is a list of
numbers representing recorded values, and a
way to structure these numbers into a shape
we can interpret as the physical image

phydemo.app

 ⇤ ↞ 9

https://phydemo.app/ray-optics/
https://github.com/ricktu288/ray-optics
https://phydemo.app/ray-optics

Sensor

1.2 V

1.6 V

1.8 V

2.1 V

2.4 V

3.1 V

2.5 V

2.1 V

1.6 V

1.2 V

22

66

88

121

154

231

165

121

66

22

Pixel
valuesReadout

Min: 1.0 V

Max: 3.3 V

xN columns

8-bit ADC

Rays

Image 10 x 10 @ 8-bit

22

66

88

121

154

231

165

121

66

22

Rays to Digital Image

 ⇤ ↞ 10

What are pixels? Resolution?

A pixel is an element of a picture. In acquisition it is the sampled value at a given position.

Represents a single, discrete intensity from the wavefront that was recorded

You may also encounter the term voxel, which is an element of a volume in 3D

Resolution, depending on the context, can be pixel spatial density (i.e. how well we can
resolve two adjacent peaks), or total pixel count, usually as a 2D shape e.g. (height, width) .

 ⇤ ↞ 11

Calibrations

Digital images are discrete, both in space and value

Position within a digital image is given by an integer coordinate:
[3, 5] not dimension [0.2 cm, 0.8 cm]

Intensity is usually recorded as an integer value
530 not a physical quantity like

Interpretation of digital images in physical units requires a calibration, accounting for
(amongst others):

Pixel size, spacing, shape

Sensor response, readout characteristics

These values may be found in the image metadata, if you're lucky!

Python: xarray, HyperSpy

 ⇤ ↞ 12

https://docs.xarray.dev/en/stable/
https://hyperspy.org/hyperspy-doc/current/user_guide/axes.html

Colour images

A colour image is a stack of images of the
same wavefront, each sampling one part of
the spectrum

We are most familiar with
RedGreenBlue (RGB) images

These are usually made with a pre-
sensor Bayer filter, which samples
colour differently in adjacent pixels

The recorded values are split into
separate R, G, and B intensity images

The three channels in the [heigh, width,
colour] stack are spatially offset, but with
intelligent recombination we can display
them without artefacts

Bayer-filter, Wiki - Cburnett

Wiki

 ⇤ ↞ 13

https://en.wikipedia.org/wiki/Bayer_filter#/media/File:Bayer_pattern_on_sensor.svg
https://en.wikipedia.org/wiki/Bayer_filter

Almeida et al (2022)

Spectral images

Spectral images are a generalisation of colour
images, where each channel represents a well-
defined band of energy.

Ideally spectral channels don't overlap in
energy, unlike many colour image filters

We normally can't sample both spatially
and spectrally simultaneously, so we create
images channel-by-channel (e.g. EFTEM),
or position-by-position (e.g STEM-EELS)

 ⇤ ↞ 14

https://arxiv.org/abs/2202.01065

Images and Computers

Image: Jean-Luc Rouvière

 ⇤ ↞ 15

Arrays of numbers

Computers store numbers long sequences of
binary digits (0 , 1), which we can interpret
to reproduce an image with a given shape

Images are 1-dimensional sequences of
numbers to a computer, there is no
hardware-level concept of height ,
width , channel etc.

Numbers can also be stored using different
rules, leading to even more ways to
(mis-)interpret an image.

The numbers:

0000000000000000000000110000110100001100000000100000000000000000
0000000000000000000011100000110100001111000010110000000000000000
0000000000000000000001110000000000001000000011110000000000000000
0000000000000000000000000000000000001101000001100000000000000000
0000000000000000000000000000001100010000000001000000000000000000
0000000000000000000000000000110100001011000000000000000000000000
0000000000000000000000110001000000001100000010000000000100000000
0000000000000000000000110001000000001011000010000000000000000000

Can be equally interpreted as:

uint8, C-order, 8x8

uint16, F-order, 4x8

sklearn: MNIST digits

 ⇤ ↞ 16

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits

Number types

There are many conventions for storing numbers as binary, here are some common ones
used in images. Usage depends on your camera electronics and what processing you do.

Names Size (bits or digits) Min Max
0100000001001001

0000111111010000

Binary bool 8 0 1 -

Unsigned Integer uint8 , ubyte 8 0 255 64 , 73 , 15 , 208

uint16 16 0 65,535 18752 , 53263

Integer int16 , short 16 -32,768 32,767 18752 , -12273

int32 , long 32 -2,147,483,648 2,147,483,647 -804304576

Floating (Decimal) float32 , float 32 -3.40E+38 -3.40E+38 3.14159

float64 , double 64 -1.70E+308 1.70E+308 -

Complex complex64 64 -3.40E+38 -3.40E+38 -

numpy: dtypes

 ⇤ ↞ 17

https://numpy.org/doc/stable/user/basics.types.html

Number types - Notes

Digital numbers are stored in a fixed amount of space - exceeding the min or max
for a type can cause wrapping, e.g. 200 + 100 = 44 !

uint8 has a maximum of 256 , so ⇒ 300 mod 256 = 44 .

The size of the number = the space it requires in memory and on disk
No reason to store 8-byte float64 if values are only 0 or 1

Often larger types ⇒ slower computation
Floating point numbers have variable precision, i.e. they can represent very large
or very small values, but cannot represent a large number with a small fraction:

float32(324,000) + float32(0.0055) = float(324,000.0) and not
float32(324,000.0055)

 ⇤ ↞ 18

A 2D image is usually ordered row-by-row, or column-by-column, by convention. As each
number occupies a fixed number of bits in the sequence, we can find the value of any pixel
by row/col arithmetic and then indexing according to the layout in memory.

Row-by-Row

Column-by-Column

column

ro
w

Mem[0] Mem[N]

Mem[0] Mem[N]

Mem[px] = (row_size * i) + j

Mem[px] = (col_size * j) + i

[j]

[i
]

numpy: memory layoutMemory layout

 ⇤ ↞ 19

https://numpy.org/doc/stable/dev/internals.html

If an image is large and >2D, e.g. a spectrum image, then memory layout can heavily affect
processing time. Jumping between memory locations is very slow compared to sequentially
reading memory, so it pays to store data in the way it will be processed.

Spectrum- [0, 4]

Image

[0, 0]

Pixel

[0, 1]

[0, 2]

[0, 3]

[0, 4]

[0, 5]

[...]

Image-by-Image

Channel

Spectrum-by-Spectrum Pixel

 ⇤ ↞ 20

Multi-image data, stacks, 4D-STEM
He

ig
ht

Width

Shape [1024, 1024] ≈ 2 MB

Width

He
ig
ht

Ch
an

ne
l

Shape [64, 1024, 1024] ≈ 128 MB

W

H

S
can Y

Scan X

Shape [100, 100, 1024, 1024] ≈ 20 GB

Tomography can an add an extra [tilt] dimension to all of the above!

 ⇤ ↞ 21

Coordinate systems

Depending on the tool or programming
language, image coordinate systems vary

Matrix notation in 2D: [row, column]

Python is 0-indexed
image[0, 0] is the first pixel

MATLAB is 1-indexed:
image[1, 1] is the first pixel

Extra dimensions e.g. channel , scan are
according to convention (and sometimes
also memory-layout).

column

ro
w

0,0

4,0

1,3

4,5

Typically row == 0/1 at the top when
displayed, with positive-down

 ⇤ ↞ 22

Maths with images

As an image is just a list of numbers, so we can do arithmethic or more complex operations
on images to yield new images or other results. For example:

image = image - image.min() # subtract the minimum value in the image from every pixel
px_sum = image[5, 7] + image[2, 4] # sum the values in two pixels
image = log(image) # take the natural logarithm of every pixel
wavefront = exp(-1j * image) # interpret the image as phase and create a complex wavefront
sum_image = image + other_image # sum two images together

Note that when operating on pairs of images they must have the same shape for the
elementwise calculation to be defined.

 ⇤ ↞ 23

def image_function(img):
 return -1 * img

img ** 2 | np.log(0.01 + img) | img * range(w)

1
2
3
4
5
6

RUN

Image: Hanako Okuno / Tescan + WikipediaMaths with images

 ⇤ ↞ 24

https://bokeh.org/
https://bokeh.org/
https://commons.wikimedia.org/wiki/File:Felis_catus-cat_on_snow.jpg

Image file formats

Images can be stored in many ways, depending on how they are used

.jpg , .png , .gif : colour RGB uint8 images, compressed for small file size,
open anywhere without special software, not for scientific data, just visualisation

.tif : a general-purpose image format, can hold most number types and shapes
TIFF files with strange data (floating point) may need special software

Can hold additional metadata (e.g. calibrations), can be compressed

Proprietary formats like .dm3/4 , .mib , .emd , .blo : specific to a certain camera
or software, not always readable elsewhere
General array formats: .mat , .npy , .hdf5 , .zarr : flexible, can be compressed,
can hold stacks / nD data and metadata, need compatible code/software

 ⇤ ↞ 25

Sparse images

In very low dose conditions (e.g. EDX), most
image pixels contain a zero value. This is
good use case for sparse images.

Storing only the non-zero values can
achieve enormous space savings

Simplest strategy is store non-zero
values and their coordinates, but
more intelligent schemes exist

Many operations are
so also avoid wasted computation

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

6 values + (x,y) coordinates ≈ 24 bytes

Full image with zeros ≈ 128 bytes

Stored as:
, 2, 1,1, 6, , 3, 3,

3, 5, , 5, 2, , 6, 5,

Python: sparse , scipy.sparse

 ⇤ ↞ 26

https://sparse.pydata.org/en/stable/
https://docs.scipy.org/doc/scipy/reference/sparse.html

Image software

Useful software packages to work with images in microscopy

 ⇤ ↞ 27

Image: Lou Denaix

Fiji (imagej.net)
Widely used in scientific imaging, plugins...

Calibrations, stacks, measurements, math,
segmentation...
 ⇤ ↞ 28

https://imagej.net/software/fiji/

Napari (napari.org)
Multi-D data viewer, annotations

Python-based, easy to add analysis

Good support for 3D volumes

 ⇤ ↞ 29

https://napari.org/

Gatan Digital
Micrograph (gatan.com)
Well-known, feature-rich GUI
even when using the free
license

Python scripting enables any
analysis with GMS display

 ⇤ ↞ 30

https://www.gatan.com/installation-instructions

Python libraries for images

The Python scientific ecosystem is vast - once an image is loaded as array data, typically
under numpy , it can be interpreted in many ways.

numpy is the general array manipulation library for Python. It provides:

The data structure for multi-dimensional arrays, including images

Fast implementations of basic operations on these arrays

random_image = = np.random.uniform(size=(64, 64)) # random image 0..1 of shape [64, 64]
theta = np.arctan(random_image) # array of radian values computed from image
phase_image = np.exp(1j * theta) # phase image from theta values

Python: numpy

 ⇤ ↞ 31

https://numpy.org/

Edge
detection

Image segmentation

scipy-ndimage (docs.scipy.org)

Low-level tools for images (e.g.
convolve, interpolate,
measurements)

scikit-image / skimage (scikit-
image.org)

High-level tools for images (e.g.
resizing, alignment,
segmentation, filtering)

 ⇤ ↞ 32

https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://scikit-image.org/
https://scikit-image.org/

Image: Gustav Persson

matplotlib (matplotlib.org)

General plotting library
Can directly imread + imshow images

Good for combining images with results +
annotations

plt.imshow(image, cmap="gray") # plot an image with gray colourmap
plt.scatter([32, 43], [16, 25]) # annotate with some points
plt.show()

 ⇤ ↞ 33

https://matplotlib.org/stable/

Image: nVidia

Graphics Processing Units (GPUs)

A Graphics Processing Unit (GPU) is a computation
accelerator which can be added to computers. They can be
used to speed up many forms of scientific computation.

GPUs are specialised to perform simple math
operations in parallel on multi-dimensional arrays
of data (such as images)

Operations for 3D graphics (coordinate
transformations, filtering, raytracing), the original
usage for GPUs, are frequently identical to math
needed in scientific computing (FFTs, convolutions,
matrix algebra and inversion).

 ⇤ ↞ 34

GPU code in Python

At least in Python, it is reasonably trivial to
make code run on GPU rather than CPU,
thanks to the standardisation efforts behind
the teams behind numpy and cupy.

Many math functions have been re-
implemented on GPU, and are used
nearly the same as the CPU equivalent

For example the following using CPU:

assert large_image.shape == (4096, 4096)

import numpy as np
img_fft = np.fft.fft2(large_image)

runs in ~1 s , but is equivalent to:

import cupy as cp
img_fft = cp.fft.fft2(large_image)

and runs in ~1 ms on a large GPU.

Python: cupy

 ⇤ ↞ 35

https://numpy.org/
https://cupy.dev/
https://cupy.dev/

Visualising images

 ⇤ ↞ 36

Image histograms

An image histogram represents the frequency of intensity values in an image. It is a useful
way to visualise the separation between background and content, and to see outlier pixels.

1

4

3

5

3

6

7

1

2

2

4

5

2

3

3

4

4

2

7

5

5

5

5

5

5

6

6

6

6

7

4

4

2 2

2

2

1

1

1

1

3

3

3

1 2

2

4

4

4

7

7

1

3 4

2

5

9x - 1

11x - 2

8x - 3

10x - 4

9x - 5

5x - 6

4x - 7
1 2 3 5 64 7

Intensity

C
ou

nt
 (p

x)

In practice would bin
intensity values!

 ⇤ ↞ 37

Data → Screen

Screens usually display uint8 RGB colour (3 values of 0-255 per-pixel, also known as 24-bit
colour). Unless our image was acquired in these three channels then we need to transform
our data from recorded intensities to screen RGB.

If we recorded intensity, then setting R = G = B on a screen gives colourless Gray
This limits us to only 256 levels of intensity to display all of the data range

If our data are more than 8-bit, need to sacrifice detail or clip values

We can use artificial colour to achieve more on-screen contrast, known as a lookup
table or colormap, of which there are many choices for different applications.

Choice of data transformation or colormap can massively influence how data are perceived.

 ⇤ ↞ 38

The basic data-to-screen transformation is linear: [img.min(), img.max()] → [0, 255] .
The brightness/constrast transform chooses two other values and clips pixels outside their
range to 0 or 255 . This removes detail in some regions while increasing it in others.

Brightness: 0.50 Contrast: 0.75 Reset

Image: Jean-Luc RouvièreTransformation: Brightness + Contrast

 ⇤ ↞ 39

https://bokeh.org/
https://bokeh.org/

Dynamic range

Dynamic range usually refers to the difference between the minimum and maximum value
that an image could possibly represent, i.e. how much depth of intensity we can store
without saturating at the top-end, or recording only zeros at the bottom.

In microscopy we often have data which span orders of magnitude in intensity (e.g.
diffraction patterns).

When brightness/contrast cannot cover the dynamic range of an image, a non-linear
mapping between data and colour can be used, trading local for global contrast:

Log-colour rescales data by its magnitude →

Gamma-colour scales the data with a power law →

 ⇤ ↞ 40

Transformation: Gamma + Logarithmic
⋮

⋯

Linear Gamma Log Reset Gamma: 1

Image: Gustav Persson

 ⇤ ↞ 41

Colourmaps

Colourmaps are critical to how we interpret
visual data. It is important that features we
see are from the data and not the map.

Some colourmaps are made to be
perceptually uniform - a in the
data is perceived as the same visual
to our eyes, across the whole range of
the colourmap.

Non-uniform colourmaps can create visual
features which do not exist, or hide real
information.

Ramp Ramp + Comb Cosine Asymmetric Phase Gaussian

Colormap

Spectrum Symmetric
Vmin/Vmax: 0 .. 1

Colormap

Temperature Symmetric
Vmin/Vmax: 0 .. 1

Kovesi (2015), Python: colorcet

 ⇤ ↞ 42

https://arxiv.org/pdf/1509.03700
https://colorcet.holoviz.org/

Colour blindness

Certain colour blindness forms are experienced in 1-5% of the population (biased towards
males). Choice of colourmap can hugely impact the perception of data for these groups.

In particular try to avoid using Red–Green to draw distinctions, as this is the most
common form of colour bindness

Trichromatic ("normal") vision Dichromatic "green-blind" vision

davidmathlogic.com/colorblind

 ⇤ ↞ 43

https://davidmathlogic.com/colorblind

Transparency (Alpha)

Digital images can also be combined or
overlaid using transparency, called alpha.

Transparency can be defined on a per-
pixel basis

For example a low-count area in an EDS map
can let the HAADF show through.

When working with colour images
you may see RGBA where A is a 4th
"colour" channel used for alpha

⋮

EDS Alpha: 0.50

Python: Matplotlib, Image: Tescan / CEA

 ⇤ ↞ 44

https://matplotlib.org/stable/gallery/images_contours_and_fields/image_transparency_blend.html

Complex and 2D-vector images

For complex images we must choose how convert real + imaginary into an standard image.

A typical example is in holography, where the reconstruction is complex
The abs() of the wave represents the amplitude

The angle() of the wave displays the phase

We also need to be careful about how to display periodic phase with a colourmap:

We can use a cyclic map → lose visualisation of phase ramps.

A common technique to work around this is phase unwrapping

 ⇤ ↞ 45

Display channel Real Imaginary

⋮

Display channel Amplitude Phase Unwrapped

⋮

Python: skimage.restoration.unwrap_phase , Image: Grillo et al. (2020)

Complex image display

 ⇤ ↞ 46

https://scikit-image.org/docs/0.25.x/auto_examples/filters/plot_phase_unwrap.html
https://zenodo.org/records/3878720

Images as signals

 ⇤ ↞ 47

Images as signals

A digital image is a sampling of a continuous world onto a discrete grid. The step- or pixel
size limits what information can be captured by the image.

Conversely, increasing pixel density adds value only if the information is there to sample:

A smooth ramp in intensity is fully defined by two points - we can interpolate
between them to get the same quality as a densely sampled image

If the optics of the microscope cannot cleanly resolve the detail we want to see,
more camera pixels will not help, we'll just have better sampled blur

For a periodic feature like atomic columns, 2 samples-per-period are sufficient
according to Nyqist-Shannon, if we impose the right model when displaying the
data. Though this wouldn't make very interesting images!

 ⇤ ↞ 48

With reduced sampling, the denser areas of the signal are not resolved.

1024x1024 512x512 128x128

Oversampled Correctly sampled Undersampled

With extra sampling, no additional detail is added
 ⇤ ↞ 49

Frequencies in 2D signals

In 1D we can perform a Fourier transform to describe a function as a sum of periodic
components each i.e. . We can evaluate the
coefficients :

each represents a contribution to by a particular frequency .

On an image we can do the same, but we must use two spatial frequencies e.g. .

A Fourier transform can be computed efficiently with a Fast Fourier Transform (FFT).

L. Barbosa - PD

 ⇤ ↞ 50

https://en.wikipedia.org/wiki/File:Fourier_transform_time_and_frequency_domains_(small).gif

Fourier transforms are complex-valued, representing the and terms.

Input image

log(abs(FFT)) phase(FFT)

real(FFT) imag(FFT)

Image: safeguardroofingandbuildingltd.co.uk

 ⇤ ↞ 51

https://www.safeguardroofingandbuildingltd.co.uk/

u

v

Higher frequency
components

For real images, the
FFT is symmetric-
conjugate

The centre pixel contains
the zero-frequency
component == the mean
intensity of the imageCentre crop 64x64

Inverse
transforms of
one pixel

(10, 5)

(0, 28)

The zero-frequency (mean value) is normally a much larger component than the rest!

Fourier components

 ⇤ ↞ 52

Uses of image Fourier transforms

The transform is reversible, it contains exactly the same information as the image

We can performing filtering by modifying the FFT, e.g. remove high-frequency
noise while leaving the main content intact

Many mathematical operations are much more efficient in frequency space than
direct space, for example correlation and convolution

Python: np.fft

 ⇤ ↞ 53

https://numpy.org/doc/stable/reference/routines.fft.html

Fourier transforms in Microscopy

High-resolution images of atomic columns are naturally periodic, and lattice spacings appear
clearly in the amplitude of an FFT.

FFT →

Peaks at
multiples
of lattice
spacing

Image: Jean-Luc Rouvière

 ⇤ ↞ 54

Fourier transforms in Microscopy

Electron holography uses FFTs to extract information from the interference pattern created
by the biprism:

FFT →

Conjugate-symmetric "sidebands"
carrying interference pattern

Carrier frequency
of interference

Image without
fringes

Image: Grillo et al. (2020)

 ⇤ ↞ 55

https://zenodo.org/records/3878720

9 x 9 Raw data

128 x 128 Interpolation

scipy.interpolate

Image interpolation

A discrete image can be interpolated into a continuous
coordinate system so that it can be re-sampled at new
coordinates.

Interpolation does not add additional information,
but can reconstruct a higher-fidelity version of the
image if we have a good model of the true signal.
Interpolation is one method to acheive sub-pixel
resolution in measurements, for example finding the
position of intensity peaks in an image

 ⇤ ↞ 56

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator

2D nearest-neighbour

Bilinear

Bicubic

Adapted from Cmglee CC BY-SA 4.0

Interpolation schemes

Interpolating schemes can be very basic (e.g.piecewise
constant) or very flexible (polynomial splines).

Interpolation can smooth an image if desired → the
interpolant doesn't perfectly reproduce values at
input positions.

Also possible to interpolate an image from
unstructured samples (i.e. not originally on a grid).

 ⇤ ↞ 57

https://commons.wikimedia.org/wiki/File:Comparison_of_1D_and_2D_interpolation.svg
https://creativecommons.org/licenses/by-sa/4.0

Sampling (pt-per-px): 1.5 Clear Remove pt

⋯

Averaging (px):
0

⋯

Python: libertem_ui , Image: Gustav PerssonInterpolated line profile from image

 ⇤ ↞ 58

https://github.com/LiberTEM/LiberTEM-panel-ui/blob/main/src/libertem_ui/applications/line_profile.py

Aliasing

A signal sampled at lower than its highest frequency can be subject to aliasing. The samples
will ambiguously fit both the true signal and other signals at combinations of the true and
sampling frequency.

Sin(f) Cos(f) Sin(1/2f)

Interpolation: Linear Sinc()

Sampling rate: 34

⋯

 ⇤ ↞ 59

Images and Geometry

Image: Jean-Luc Rouvière

 ⇤ ↞ 60

Geometric transforms of images

The information in an image exists on a coordinate grid. We can map it onto a new grid
using a transform, and so translate, stretch, rotate, shear, or generally warp the data.

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Transform →

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Python: skimage.transform

 ⇤ ↞ 61

https://scikit-image.org/docs/0.25.x/api/skimage.transform.html

Resizing

Image rescaling maps, for example, pixel [5, 3] to [5 * scale, 3 * scale] , for all pixels.

The new image is generated by sampling new pixel coordinates via interpolation.

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

0 1 2 3

0
1

2
3

Resize /2 →

Distinct from binning as we are not limited to integer scale factors.

Python: skimage.transform.resize

 ⇤ ↞ 62

https://scikit-image.org/docs/0.25.x/api/skimage.transform.html#skimage.transform.resize

Matrix transforms

Many coordinate transformations can be represented as a matrix multiplication.

We just saw rescaling, which can be represented as:

After which we can interpolate on the grid to create the transformed image.

 ⇤ ↞ 63

(Affine) Matrix transforms

Other uniform transformations include:

Scaling + Rotation by Flip- Shear Shift +

These can be chained to create more complex transforms e.g.

The row / column 0, 0, 1 is called a homogeneous coordinate and allows translation.

Python: skimage.transform.AffineTransform

 ⇤ ↞ 64

https://scikit-image.org/docs/0.25.x/api/skimage.transform.html#skimage.transform.AffineTransform

Scale up

Scale down

Clear

Rotate ↶

Rotate ↷

Shear-X +

Shear-X -

Shear-Y +

Shear-Y -

Shift-X →

Shift-X ←

Shift-Y ↓

Shift-Y ↑

⋯ ⋯

Image: Jean-Luc Rouvière(Affine) Matrix transforms

 ⇤ ↞ 65

Polynomial transform

Affine transforms preserve straight lines and
parallelism - but in some cases we may need
to correct curves, e.g in STEM with sample
drift.

A very flexible transform is a polynomial
transform, which has the general form:

mapping to (equivalently to with
additional).

Run Reset Show original Load

⋯

Python skimage.transform.PolynomialTransform , Image: Jean-Luc Rouvière

 ⇤ ↞ 66

https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.PolynomialTransform

Image: Gustav Persson

Polar image transform

Some images, e.g. diffraction patterns, can be
interpreted in polar coordinates .

This can be acheived another type of non-affine
coordinate transform:

We generate this mapping for all in the
image, then interpolate at the we want to
display a new image for.

Python skimage.transform.warp_polar

 ⇤ ↞ 67

https://scikit-image.org/docs/0.25.x/api/skimage.transform.html#skimage.transform.warp_polar

Image: Gustav Persson

Image Filtering

 ⇤ ↞ 68

Filtering

Filters enhance certain information in an image, compensate for issues in the imaging
system or highlight properties of the image which are beyond a simple intensity distribution.

5x5 Gaussian 3x3 Median 3x3 SobelRaw

Filtering is usually a pre-processing step before applying other methods.

Python skimage.filters

 ⇤ ↞ 69

https://scikit-image.org/docs/0.25.x/api/skimage.filters.html

A simple type of filter is patch-based. These run a procedure in the vicinity of each pixel to
generate a new value for that pixel.

1

4

3

5

3

6

7

1

2

2

4

5

2

3

3

4

4

2

7

5

5

5

5

5

5

6

6

6

6

7

4

4

2 2

2

2

1

1

1

1

3

3

3

1 2

2

4

4

4

7 Maximum(3x3) = 7

1

4

3 2

5

2

3

2

7

.

.

.

.

7 7

.

.

.

.

.

.

.

5

.

.

.

7

.

.

.

6

. .

.

.

.

.

.

7

.

6

.

.

Maximum(3x3) = 6

Edges need special treatment as their neighbourhood is limited, else the filtered image
becomes smaller. Padding with zeros, periodic boundaries or reflecting the boundary
are common ways to handle this.

Patch-based filters

 ⇤ ↞ 70

Gaussian blur

Gaussian blur is a patch-based filter which computes a local Gaussian-weighted average of
values in each pixel's local neighbourhood.

Raw Blur 3x3 Blur 5x5

Python skimage.filters.gaussian

 ⇤ ↞ 71

https://scikit-image.org/docs/0.25.x/api/skimage.filters.html#skimage.filters.gaussian

Median filter

The Median filter is a patch-based filter which is quite useful for removing extreme values,
for example hot or dead pixels. A Gaussian blur would incorporate these unwanted extremes
into the blurred image.

Noise- Corrupted Blur 3x3 Median 3x3

Python skimage.filters.median , Image: Jean-Luc Rouvière

 ⇤ ↞ 72

https://scikit-image.org/docs/0.25.x/api/skimage.filters.html#skimage.filters.median

Convolution filters

Convolutional filters are a class of patch-
based filters using elementwise
multiplication and summation with a small
kernel to compute each new pixel value.

They can be efficiently computed
using a Fourier transform since

GPUs are very efficient at computing image
convolutions.

Dumoulin and Visin (2016)

Python scipy.signal.convolve2d

 ⇤ ↞ 73

https://arxiv.org/abs/1603.07285
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html

Raw

-1 -1 -1
-1 17 -1
-1 -1 -1

0.02 0.04 0.02
0.04 0.81 0.04
 0.02 0.04 0.02

 0 -1 0
-1 4 -1
 0 -1 0

/ 9

Sharpen Gaussian Laplacian

Kernels can be designed to respond to arbitrary features, e.g. corners or textures.

Convolution underpins many image neural networks, filters guide classification

Python skimage.filters

Example kernels

 ⇤ ↞ 74

https://scikit-image.org/docs/0.25.x/api/skimage.filters.html

Horizontal edges

Vertical edges

-1 0 1
-2 0 1
-1 0 1

-1 -2 -1
 0 0 0
 1 2 1

Edge filters (Sobel filter)

Edge filters respond to sharp transitions in
image intensity, or large image gradient, and are
useful in applications like peak finding or contour
detection for metrology.

Raw
Horizontal^2
+
Vertical^2

The size of the filter influences whether it
catches sharp edges or soft edges.

Python skimage.filters.sobel

 ⇤ ↞ 75

https://scikit-image.org/docs/0.25.x/api/skimage.filters.html#skimage.filters.sobel

Frequency space filtering

Zero-ing or modifying frequencies in the FFT of an image acts as a filtering process.

The most well-known are:

Low-pass or high-cut, which retain low-frequency information like gradients
Block the FFT far from the centre

High-pass or low-cut, which retain high-frequency information like edges
Block the central part of the FFT

Band-pass → cut both high-frequency and low-frequency information
Block everything except a ring of frequencies

 ⇤ ↞ 76

Frequency space filtering
Low-pass High-pass Band-pass Filter radius: 400

⋮ ⋮

Image: safeguardroofingandbuildingltd.co.uk

 ⇤ ↞ 77

https://www.safeguardroofingandbuildingltd.co.uk/

Latu-Romain (2021)

Image Segmentation

 ⇤ ↞ 78

scikit-image CC PD-1.0

Image segmentation

Image segmentation algorithms label pixels of an image
based on what they each represent

Poly-crystal phase and orientation mapping is a form
of image segmentation, for example to measure a
grain size distribution

Segmentation algorithms can use local- and non-local
information to label a pixel:

Intensity of the pixel and its neighbours

Location of a pixel with respect to edges / shapes
Texture in the region of the pixel

Python skimage.segmentation

 ⇤ ↞ 79

https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_trainable_segmentation.html#sphx-glr-auto-examples-segmentation-plot-trainable-segmentation-py
https://creativecommons.org/publicdomain/zero/1.0
https://scikit-image.org/docs/0.25.x/api/skimage.segmentation.html

Binary thresholding

The simplest segmentation is a hard cut in intensity: above the cut is assigned category 1
or True , below a 0 or False . For simple, high-contrast data this is often sufficient.

⋮
⋯

 ⇤ ↞ 80

Binary image operations

A binary image can be modified using
morphological operations, which shrink or
expand a region, or fill holes.

A "footprint" array is convolved with the
binary image, where this overlaps True
pixels we modify according to some rule.

Reset Skeletonize Remove small regions

Erode Dilate Fill small holes

⋮

Python: skimage.morphology , Diagram: Mardiris (2016)

 ⇤ ↞ 81

https://scikit-image.org/docs/stable/api/skimage.morphology.html
https://pdfs.semanticscholar.org/a41a/40b12cd4851e63cfc2ddcfce11f9af6fa106.pdf

Image Labelling - Connected
Components

The connected components algorithm can be
used to number isolated regions in a binary
image, allowing us to count and measure
properties like area and diameter.

The algorithm propagates the label of adjacent
True pixels, or creates a new label, until no

unlabelled pixels remain.

skimage.measure.label

 ⇤ ↞ 82

https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.label

Connected Components example
Image Threshold Components

⋮

Threshold: 0.50

⋯

skimage.measure.label , regionprops , Image: NISE

 ⇤ ↞ 83

https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.label
https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops
https://www.nisenet.org/catalog/scientific-image-gold-nanoparticles

4 intensity threshold bands

Image: Jean-Luc Rouvière

Multi-level thresholding

If the image contains multiple regions
at different intensity levels then we can
repeatedly apply intensity thresholding
to segment it.

 ⇤ ↞ 84

Image: CEA + Tescan

Image features

When an image contains intensity gradients or noise then
threshold-based segmentation can be impossible.

More advanced algorithms compute feature vectors on the
data - combining intensity, edges, textures etc. - to
distinguish categories which share properties.

Classical approaches include:

Gabor filters

Gray-level co-occurrence matrices
Local binary patterns

In practice probably use deep learning!

Python: skimage.feature

 ⇤ ↞ 85

https://scikit-image.org/docs/stable/api/skimage.feature.html

fritz.ai

Deep learning for image
segmentation

Image segmentation was an early
application of convolutional neural
networks (CNNs), particularly as image
features are difficult to construct. The
model can instead learn optimal
features for the data it is trained on.

The most well-know, albeit now quite
old architecture are the U-Nets, which
are designed to combine information at
multiple image scales to inform the
segmentation.
 ⇤ ↞ 86

https://fritz.ai/deep-learning-for-image-segmentation-u-net-architecture/

Image Restoration

 ⇤ ↞ 87

Image: Wikipedia, PD

Image restoration

Image restoration refers to techniques
to remove artefacts or noise from an
image while preserving the content.

Filtering is a type of image
restoration, but is simpler.
Restoration frequently estimates
how an image would have been
without its artefacts.

In low-dose, low signal-to-noise data,
denoising is of particular interest.

 ⇤ ↞ 88

https://commons.wikimedia.org/wiki/File:Austenite_ZADP.jpg

Denoising: Non-Local means

Rather than a simple average of local patches around each pixel, instead average all pixels in
the image weighted by their similarity to the pixel being denoised.

Similarity map for one point Average weighted by similarityRaw image

x → ÷

Python: skimage.restoration.denoise_nl_means

 ⇤ ↞ 89

https://scikit-image.org/docs/stable/auto_examples/filters/plot_nonlocal_means.html#sphx-glr-auto-examples-filters-plot-nonlocal-means-py

Denoising: Block-Matching 3D (BM3D)

The BM3D algorithm improves non-local means by grouping similar image patches and
filtering them together. Going beyond a simple weighted average greatly improves edge and
texture preservation. Extensions exist for denoising time-series and hyperspectral data.

Dabov et al. (2006)

 ⇤ ↞ 90

https://webpages.tuni.fi/foi/GCF-BM3D/
https://webpages.tuni.fi/foi/GCF-BM3D/

Deep-learning for denoising

Denoising is a problem which is well-suited to
unsupervised deep learning, because noise has
simple statistics compared to image content.

A well-known architecture are the Noise2-
models, e.g. Noise2Noise, which can efficiently
denoise images without clean data to train from.

These models are available as command-
line tools, no programming required:

Python: careamics

 ⇤ ↞ 91

https://arxiv.org/abs/1803.04189
https://careamics.github.io/0.1/

Inpainting

Inpainting replaces corrupted or missing data with a best-estimate. Some examples are to
infill:

dead pixels
image area covered by a beamstopper

a sensor bonding gap.

 ⇤ ↞ 92

Inpainting - Interpolation

Simple interpolation is a good approach for small defects such as dead pixels.

Raw Invalid mask Interpolated

 ⇤ ↞ 93

cleanup.pictures

Deep Learning Inpainting

Inpainting is a very active field in deep
learning, notably for natural images
(e.g. background modification on
smartphones).

An example is Large Mask Inpainting -
LaMa (Suvorov et al., 2022).

Take care with scientific images as
common models are not trained on
these domains, and the "invented" data
are likely misleading!

 ⇤ ↞ 94

https://cleanup.pictures/
https://github.com/advimman/lama
https://github.com/advimman/lama

Image: CEA + Tescan

Pattern matching and
image alignment

 ⇤ ↞ 95

Pattern matching and image alignment

A common need in microscopy is to locate some image feature: an edge, a spot a corner - in
order to measure somthing about it. This is an application of pattern matching.

A related problem is image alignment, where two-or-more images are separated by
acquisition drift or change of scale, but we would like to compare the data from both images
on the same grid or plot, requiring us to transform one image into the coordinate system of
the other(s). Image alignment is also often referred to as image registration.

 ⇤ ↞ 96

Peak-finding

When the feature to detect is a local minimum or maximum in the intensity image, we can
use peak-finding to locate it. A simple algorithm uses a maximum filter:

Raw data Maximum �lter 20x20 Filtered == Raw

Python: skimage.feature.peak_local_max

 ⇤ ↞ 97

https://scikit-image.org/docs/0.25.x/auto_examples/segmentation/plot_peak_local_max.html

Peak-finding in 1D,
example
In practice with noisy data it
is also necessary to:

optimise the maximum
filter window

sort the peaks by value
and perform a cut

filter any peaks which
are too similar

 ⇤ ↞ 98

Python: scipy.ndimage.center_of_mass

Subpixel refinement with
Centre-of-Mass

The simple peak finding algorithm only
returns maxima at integer pixel
coordinates.

We can acheive greater precision by
performing intensity-weighted local
centre-of-mass around each peak.

 ⇤ ↞ 99

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.center_of_mass.html#scipy.ndimage.center_of_mass

Template matching

When the feature to find is not a local maximum, or we need to detect a particular pattern in
the intensity rather than a point, one approach is template matching, based on the
correlation between our target image and the template or pattern that we want to find.

Python: skimage.feature.match_template

 ⇤ ↞ 100

https://scikit-image.org/docs/0.25.x/auto_examples/features_detection/plot_template.html

Template matching: locate matches

Checking all template positions generates a 2D correlation map with peaks at all "good"
matches. Then use a peak-finding algorithm (with refinement) to locate the best positions.

Correlation map + Peaks Raw image + matches

Python: skimage.feature.peak_local_max

 ⇤ ↞ 101

https://scikit-image.org/docs/0.25.x/auto_examples/segmentation/plot_peak_local_max.html

Filter + Sobel

Raw Image

Correlation map

Template matching:
filtering

Template matching is very
sensitive to both template
choice and image quality.

Often useful to filter the
target image to acheive
sharper peaks in the
correlation image, leading to
more precise results.

 ⇤ ↞ 102

Image alignment

If we want to align whole images in
translation we can compute the cross-
correlation between them.

The maximum in the correlation map can be
found using peak-finding.

Python: skimage.registration.phase_cross_correlation

 ⇤ ↞ 103

https://scikit-image.org/docs/0.25.x/api/skimage.registration.html#skimage.registration.phase_cross_correlation

Image alignment, correlation-based

In practice whole-image correlation-based alignment is not very robust, and will fail for
changes of scale or image rotation.

In some cases, aligning on just a subset of the image simplifies the correlation map
Downscaling the images can improve results, as noise is minimised and the
alignment uses only "large" features of the image

Multi-scale or "pyramid" alignment first aligns at a large scale, then
progressively increases resolution while constraining the maximum shift.

Image filtering and pre-processing (e.g. normalisation) can also hugely affect the
reliability

 ⇤ ↞ 104

Fourier image shifting

A useful property of a Fourier transform:

shifting a signal in real space is
equivalent to multiplication by a
complex exponential in the
transformed space, i.e. a phase shift

This can be used to shift an image even by
sub-pixel distances.

X-Shift

Python: scipy.ndimage.fourier_shift

 ⇤ ↞ 105

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.fourier_shift.html

Original image

Translated image

Keypoints

Correspondences

Image alignment, automatic
point-based

An alternative approach is to fit a
geometric transform between the two
images based on corresponding
points visible in both.

These points can be estimated
automatically using a feature extractor
like SIFT (Scale Invariant Feature
Transform) or chosen manually.

Python: skimage.feature.SIFT , pystackreg

 ⇤ ↞ 106

https://ieeexplore.ieee.org/document/790410
https://ieeexplore.ieee.org/document/790410
https://scikit-image.org/docs/0.25.x/auto_examples/features_detection/plot_sift.html#sphx-glr-auto-examples-features-detection-plot-sift-py
https://pypi.org/project/pystackreg/

Run

Transformation type

Affine
Overlay alpha: 0

Clear points

⋯ ⋯

Image alignment, manual point-based

 ⇤ ↞ 107

Summary

 ⇤ ↞ 108

Summary

Digital images underpin almost all of modern microscopy, and influence how data are
acquired, interpreted and perceived.

This presentation was a very rapid overview of a lot of topics, and should be seen as a
starting point for what could be done with your data.

Please reach out if you have questions or ideas at GitHub: @matbryan52 or at
matthew.bryan@cea.fr

 ⇤ ↞ 109

https://github.com/matbryan52
mailto:matthew.bryan@cea.fr

About the slides

These slides are written in Marp using Markdown.

The interactive components are based on Panel and Bokeh, which can be used both in
standalone web-pages and within Jupyter to put interactivity in-line with your analysis.

Diagrams were drawn with Excalidraw.

The source, figures and code for everything is on Github: matbryan52/microscopy-images-
qem.

 ⇤ ↞ 110

https://marp.app/se
https://en.wikipedia.org/wiki/Markdown
https://panel.holoviz.org/
https://bokeh.org/
https://excalidraw.com/
https://github.com/matbryan52/microscopy-images-qem
https://github.com/matbryan52/microscopy-images-qem

Thank you for listening

 ⇤ ↞ 111

