Electron Holography

Etienne Snoeck, Aurélien Masseboeuf, Florent Houdellier, Raphaël Serra, Julien Dupuy, Kilian Gruel, Cécile Marcelot, Robin Cours, Bérengère Disic, Leiterg Zhang, Christophe Gatel and Martin Hÿtch I3EM, CEMES-CNRS, Toulouse, France, Europe

Université Fédérale Toulouse Midi-Pyrénées CENTRE D'ÉLABORATION DE MATÉRIAUX ET D'ÉTUDES

STRUCTURALES

Why Holography?

600 640 Energie (eV)

- Why Holography? ٠
 - magnetic fields _
 - electric fields
 - strain fields _
 - (super resolution) _

- Why HR(S)TEM?
 - local structure
 - (strain mapping, composition)

Why Diffraction?

- crystallography
- (lattice parameters, bonding)
- Why CTEM?
 - defects _
 - (morphology)
- Why EELS/EDS?
 - composition, chemistry
 - electronic states, (magnetism)

Maxwell's Equations

Martin Hytch – QEM 2025

James Clerk Maxwell, Phil. Mag (1861). On the Physical Lines of Force.

Wave-Particle Duality

Double-slit thought experiment

Experiment: electron holography, one electron at a time

P. G. Merli, G. F. Missiroli, and G. Pozzi, *American Journal of Physics* **44** (1976), 306–307

0.0001 e/pix Christophe Gatel, K3 Gatan

Phase approximation

 $k_0 = 1/\lambda$

Wavefunction:

$$\Psi(\boldsymbol{r},z) = \psi(\boldsymbol{r})e^{2\pi i k_0 z}$$

Incident wavefunction:

$$\psi_0(\boldsymbol{r}) = 1$$

Object wavefunction:

$$\psi_{\rm obj}(\boldsymbol{r}) = e^{2\pi i \phi(\boldsymbol{r})}$$

- Pure phase object
- Medium-resolution electron holography

Aharonov-Bohm Phase

Sample O Reference -Object wave wave Electron biprism Hologram а

Martin Hytch – QEM 2025

$$\phi = c_E \int V^E(\mathbf{r}) dz - \frac{e}{\hbar} \int A_z(\mathbf{r}) dz$$

$$c_E = \frac{me\lambda}{2\pi\hbar^2}$$

$$\phi^E = c_E \int V^E(\mathbf{r}) dz \qquad \phi^M = -\frac{e}{\hbar} \int A_z(\mathbf{r}) dz$$
• electrostatic phase

magnetostatic phase

A. Tonomura et al, Phys. Rev. Lett. 56, 1215 (1986)

Atoms and Zone-axes

Amorphous or Off-axis

Internal potentials, charges, strain

Finite Element Method (FEM)

Phase measurements

Martin Hytch – QEM 2025

12

• Geometry

M.J. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, Ultramicroscopy 111 (2011) 1328–1337

How to make a hologram

and calculate the phase

Electron holograms

Martin Hytch – QEM 2025

17

M. Lehmann, Ultramicroscopy 100 (2004) 9–23

G. Möllenstedt & H. Düker, Zeitschrift für Physik (1956)

Phase calculation

e

19

Martin Hytch – QEM 2025

 choose appropriate mask size

Raw phase image

e

20

Martin Hytch – QEM 2025

 derivative amplifies any problems

Reference Hologram

e

21

Martin Hytch – QEM 2025

- counting statistics
- spatial coherence
- Fresnel fringes

Corrected phase

e

22

• better

Electron holograms

Mean inner potential

Martin Hytch – QEM 2025

25

- mean inner potential measurements
- observation of small particles

Dopant profiling

n-MOS and p-MOS transistors

Martin Hytch – QEM 2025

Variation of the electrostatic potentiel across the junction = 0.9 ± 0.12 V

• specimen preparation the key

W.D. Rau, P. Schwander, F.H. Baumann, W. Höppner and A. Ourmazd PRL (1999) 82, 2614

In-situ biasing

A.C. Twitchett, R.E. Dunin-Borkowski, P.A. Midgley, Phys. Rev. Lett. 88 (2002) 238302

Many Years later

What technique is best for my material or problem?

Charge counting

Martin Hytch – QEM 2025

$$Q = \varepsilon_o \oint_S E.\,dS$$

- Electric field in the vacuum
 - cube is charged!
- Maxwell's Equations
 - Gauss's Law

C. Gatel, A. Lubk, G. Pozzi, E. Snoeck, and M.J. Hÿtch, Phys. Rev. Lett. 111, 025501 (2013)

F. Houdellier, A. Masseboeuf, M. Monthioux, M.J. Hÿtch, Carbon 50 (2012) 2037

Michelangelo Experiment

Martin Hytch – QEM 2025

L. de Knoop, C. Gatel, F. Houdellier, M. Monthioux, A. Masseboeuf, E. Snoeck, and M.J. Hötch, APL 106, 263101 (2015)

Magnetic Fields

Martin Hytch – QEM 2025

R. E. Dunin-Borkowski et al, Science 282, 1868 (1998)

Martin Hytch – QEM 2025

M. J. Hÿtch et al., Phys. Rev. Lett 91, 257207 (2003)

Fe nanoparticles

C. Gatel et al., Nano Letters 15, 6952 (2015)

Beam me up, Régis

+

Courtesy of Aurélien Masseboeuf

Martin Hytch – QEM 2025

39

Fresnel - Under-Focused

Fresnel - Over-Focused

Holography - Phase (raw)

Phase Cosine (iso-phase <=> induction flux)

Induction Map (Phase gradients - Colour wheel)

Composite Map (Phase gradients x Contour)

Operando experiments

Martin Hytch – QEM 2025

J. F. Einsle, C. Gatel, A. Masseboeuf, R. Cours, M. A. Bashir, M. Gubbins, R. M. Bowman and E. Snoeck, Nano Research 8, 1241 (2015).

Christophe Gatel & Martin Hÿtch, Holo Live! (HREM Research Inc.)

Christophe Gatel & Martin Hÿtch, Holo Live! (HREM Research Inc.)

Geometric phase

wave function $\psi(\mathbf{r}) = \sum \widetilde{\psi}_g(\mathbf{r}) exp\{2\pi i \mathbf{g}.\mathbf{r}\}$ incident beam diffracted g sample beams $r \rightarrow r - u$ displacement $\implies \widetilde{\psi}_g \to \widetilde{\psi}_g e^{-2\pi i \mathbf{g} \cdot \mathbf{u}}$ diffracted transmitted beam beam geometric phase ϕ^{G} ϕ^{G} NO φ^G G $2\pi \mathbf{g}.\mathbf{u}$ Φ g $\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} \right)$ ∂u_j displacement strain

Martin Hytch – QEM 2025

Experiment

M.J. Hÿtch, F. Houdellier, F. Hüe & E. Snoeck, Nature 453 (19th June 2008) 1086

2D Deformation

Martin Hÿtch, Christophe Gatel and Kazuo Ishizuka HoloDark software (HREM Research)

Inside « La Boule »

e

51

Martin Hytch – QEM 2025

• 1 MeV electron accelerator, in free air

Downstairs « La Boule »

Martin Hytch – QEM 2025

52

• Powerful and unique electron microscopes

New Instrumentation

SACTEM

L.-M. Lacroix et al., Nano Letters 12, 3245–3250 (2012)

Magnetic phase: nc-Fe

Martin Hytch – QEM 2025

55

Courtesy of Nikolay Cherkashin

Longer exposure times

A. Harscher & H. Lichte Ultramicroscopy 64, 57-66 (1996)

Martin Hytch – QEM 2025

E. Voelkl & D. Tang Ultramicroscopy 110, 447–459 (2010)

Automation: Stabilisation

Specimen drift control

Martin Hytch – QEM 2025

59

JEOL ARM 200

Collaboration C. Genevois and C. Bouillet, Platform MACLE Centre Val de Loire, Orléans

Fringe Control

beam tilts of 0.13

GTY - 0.09

Nb of Meas 2

14.16

1st

s

Phase 1.0

Wait 0.8

π

μrads

ONEVIEW vs K3

Same pixel resolution

0.004 pixel displacement 20 nm on chip !

In-situ Holography

and quantification

Holograms contain artefacts Holograms contain unwanted terms

$$\phi = \phi^{C} + \phi^{G} + \phi^{M} + \phi^{E}$$

FIB preparation

In-situ EH: test structure

Martin Hytch – QEM 2025

e

71

 $\phi^{E} = c_{E} \int V(\mathbf{r}) dz$

Electron Holography

Image processing

FIB sample preparation

damage and defects

Martin Hytch – QEM 2025

- surface protection layer
- amorphous layer
- damage and impurities
- specimen curvature and bending

Cross of Cross-section

Beam Charging

1 rad \approx 1 Volt

Fitting Solution

Martin Hytch – QEM 2025

77

Perfect agreement with volume charge density in Si_3N_4 of -2.10⁵ C.m⁻³

MOS: Si-SiO2-Ti: MIM

C. Gatel, R. Serra, K. Gruel, A. Masseboeuf, L. Chapuis, R. Cours, L. Zhang, B. Warot-Fonrose, and M. J. Hÿtch, Phys. Rev. Lett. 129, 137701 (2022)

M. Brodovoi, K. Gruel, L. Chapuis, A. Masseboeuf, C. Marcelot, M. J. Hÿtch, F. Lorut, and C. Gatel, APL (2022)