

Workflow for Near Real-Time Processing of Large 4D STEM Experimental Datasets

Daniel G. Stroppa

Quantitative Electron Microscopy

Port Barcares, FR

14.May.2025

daniel.stroppa@dectris.com

dectris.com

Disclaimer

DECTRIS and beyond

- ideas that may fit any detector

4D STEM and beyond

- ideas that may apply to different applications

Pace and style

- after-lunch session
- 32 slides / 90 min
- take it offline

Have fun!

Workflow for Near Real-Time Processing of Large 4D STEM Experimental Datasets

Daniel G. Stroppa

Quantitative Electron Microscopy

Port Barcares, FR

14.May.2025

daniel.stroppa@dectris.com

dectris.com

STEM imaging

STEM imaging of AI oxide precipitates in rubber

STEM imaging

STEM imaging of AI oxide precipitates in rubber

STEM imaging

Sample information at different scattering angles

4D STEM setup

4D STEM (or diffraction mapping!)

Reference: Ophus C. et al., Microscopy and Microanalysis (2019), 25-3, 563-582.

Workflow for Near Real-Time Processing of Large 4D STEM Experimental Datasets

Daniel G. Stroppa

Quantitative Electron Microscopy

Port Barcares, FR

14.May.2025

daniel.stroppa@dectris.com

dectris.com

Datasets size

1. Real Space (x, y)

- Scan dimensions: user choice
- Example: 1024 x 1024
- 2. Diffraction space (i, j)
 - Detector dimensions: hardware
 - Example: 192 x 192

Datasets size

3. Bit depth (d)

- Dynamic range: amount of signal
- Example: 16 bits
 - ~ 80 GB (!)

- 4. Compression (optional)
 - Lossless and lossy strategies
 - Example: HDF5 ~ 80 95% reduction

"New wave" of 4D STEM applications

*T4 bacteriophage, 4D STEM tomography*41 x 1024 x 1024 datasets, Serial-EM integration

Nanocrystalline gold, in situ heating + 4D STEM 200 kV, 1024 x 1024 datasets, 100 s per map

Workflow for Near Real-Time Processing of Large 4D STEM Experimental Datasets

Daniel G. Stroppa

Quantitative Electron Microscopy

Port Barcares, FR

14.May.2025

daniel.stroppa@dectris.com

dectris.com

a) Virtual STEM detectors

"Flexible imaging with tuneable contrast"

Shahar Seifer, Michael Elbaum, Lothar Houben, Roberto dos Reis Reference: Microscopy and Microanalysis, 30, 476-488 (2024) - [https://zenodo.org/records/10679006].

b) E / B fields imaging

"DPC for EM fields and advanced imaging"

Elisabeth Mueller, Mingjian Wu Reference: [https://zenodo.org/records/ 8354219]

Christian Liebscher

Zhang, X. et al. Scripta Mater. 247 116097 (2024).

c) Ptychography

"Image reconstruction for ultimate resolution"

Philipp Pelz, Mingjian Wu

Reference: [https://zenodo.org/records/ 8354219]

Colin Ophus, Stephanie Ribet, Georgios Varnavides https://arxiv.org/abs/2309.05250 (2024).

d) Crystal phase / orientation mapping

"HR-EBSD with TEM"

e) Strain analysis

"Alternative to complex methods"

Mingjian Wu, Erdmann Spiecker

Reference: Wu, M. et al. J. Phys. Mater. 6 045008 (2023), [https://zenodo.org/records/ 8354219]

Workflow for Near Real-Time Processing of Large 4D STEM Experimental Datasets

Daniel G. Stroppa

Quantitative Electron Microscopy

Port Barcares, FR

14.May.2025

daniel.stroppa@dectris.com

dectris.com

Fast 4D STEM today

ARINA detector at > 100'000 fps

Data rate in numbers

Real Space (x, y): 1024 x 1024

Diffraction space (i, j): 96 x 96 (bin2)

Raw data size (GB): 19 GB

Compressed size (GB): 2 GB

Acquisition time (s): ~ 11 s

ARINA detector at > 100'000 fps

"Bigger, faster, more dynamic range..."

Importance of near real-time processing

"4D STEM is not readily interpretable"

"Region of interest selection"

Importance of near real-time processing

"TEM tuning support"

"(No-)Human-in-the-loop"

Reference: Roccapriore, K. et al. ACS Nano 16-5, 7605–7614 (2022)

Data path with ARINA

4D STEM data acquisition

Detector Control Unit in details

- 1. Communication with ARINA
 - API interface
 - Open scripting for custom acquisitions
- 2. Tasks you probably don't care
 - Detector frame synthesis, compression
 - Calibrations and adjustments
- 3. Data output
 - 3 simultaneous channels (2 relevant)
 - Filewriter: "here is your full data stack"
 - Stream: "every frame, ASAP"

Elementary processing of stream interface

Dose: 1.15 fC

Rate: 0.125 nA

Reference: Seifer, S. et al, Micr. Microanal. 30 (3), 476–488 (2024)

Heavier processing of stream interface

Heavier processing of stream interface

😚 UTokyo

Next chapter – the DECTRIS Cloud

	DECTRIS CLOUD >>> Data / 🕼 Dectris Data / 🖧 DCEU:2025:50682						
Data	Data C DCEU:2025:50682 □ DCEU:2025:50682 □						
Cockpit	Team Data Personal Data	ID: DCEU:2025:50682	DCEU	즈 EIGER	† 202	25/04	Pl Ludmila Leroy
Team	🗋 Experiments —	FOLDERS		🛅 metadata		processed	
	My Experiments Logbook	E raw		🗅 work			
	Collaboration	FILES No files in current directory					
	🗋 Projects —						
	My Projects						

Next chapter – the DECTRIS Cloud

Workflow for Near Real-Time Processing of Large 4D STEM Experimental Datasets

Daniel G. Stroppa

Quantitative Electron Microscopy

Port Barcares, FR

14.May.2025

daniel.stroppa@dectris.com

dectris.com