Electron crystallography

3D electron diffraction for crystal structure determination

Lukas Palatinus

Institute of Physics of the CAS, Prague, Czech Republic

Institute of Physics of the Czech Academy of Sciences

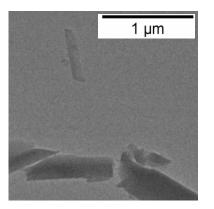
Outline

- What is 3D ED
- From diffraction patterns to crystal structure
- Challenges in 3D ED:
 - Experimental techniques
 - Crystal tracking
 - Distortions in diffraction patterns
 - Dealing with dynamical diffraction effects
- Some examples and highlights

Electron crystallography

General definition: a scientific field which retrieves crystallographic information by using electrons as a radiation probe

In a stricter sense: crystal structure determination predominantly by means of electron diffraction


Information obtainable (in principle) from crystallographic investigation:

- crystal structure
- chemical composition
- polymorphism
- molecular connectivity
- molecular structure including absolute configuration
- nature of molecular species (salt/co-crystal)
- bonding ...

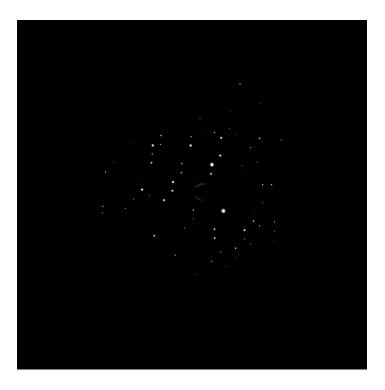
Electrons interact strongly with atoms --> possibility to analyze small crystals.

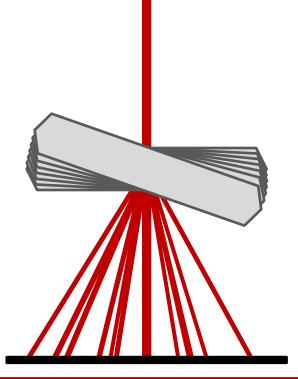
For a crystallographer, this is small

...and this is really really small.

100 nm

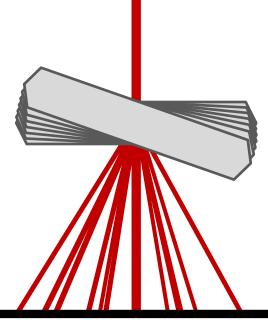
Basic relationship: diffracted intensity is proportional to the square of the amplitude of the diffracted wave: $I \propto A^2$

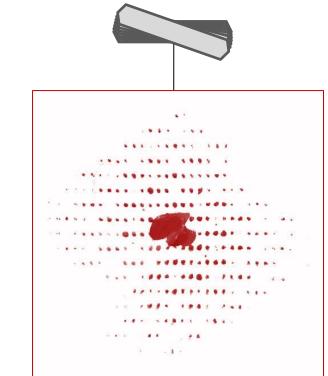

The diffracted wave from a (small) crystal is proportional to the Fourier transform of the scattering power density in the unit cell of the crystal. This quantity is called the *structure factor:*

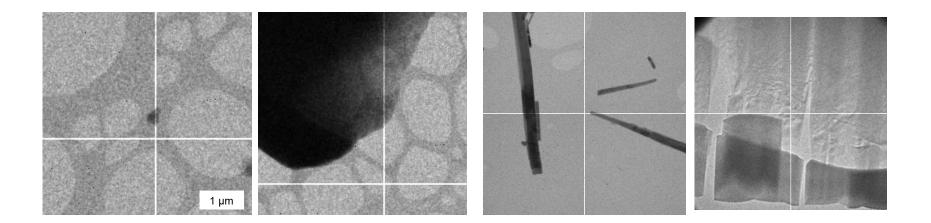

$$F_{\mathbf{h}} = \int_{V_{UC}} \rho(\mathbf{r}) \exp(2\pi i \mathbf{h} \cdot \mathbf{r}) dV$$
$$\mathbf{h} = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$$
Hence: $I_{\mathbf{h}} \propto |F_{\mathbf{h}}|^2$

Basic assumption for the validity of the relationship: The crystal is very small. It is so small, that each quantum of radiation gets scattered at most once.

The theory based on this assumption is called the *kinematical diffraction theory*

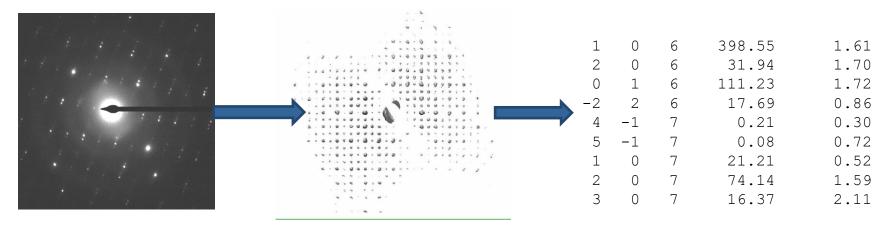

3D electron diffraction (3D ED)




3D electron diffraction (3D ED)

Step 0: prepare the sample

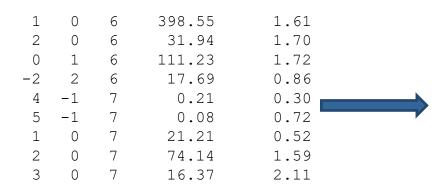
You need small, but especially THIN crystals. Ideally <100nm

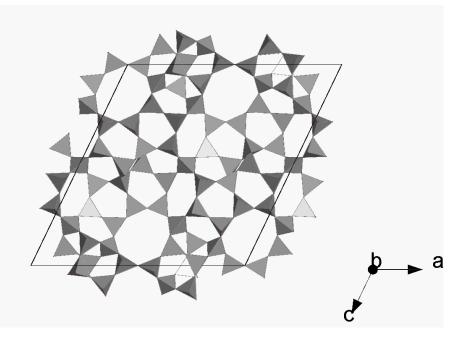

Step 1: collect data

- option *a*: you have an adapted microscope with suitable data collection software. Well, then use it!
- option **b**: you have a dedicated electron diffractometer. Even better!
- option c: No special microscope, no special software. You can still collect the data manually. Tedious, but works fine for beam-stable materials!

What microscope do you need:

- large tilt at least ±40°
- precession capability useful, but not necessary
- radiation hard detector, ideally with fast readout (not 100% necessary)
- no need for special features, no high resolution, no aberration correction, monochromator or filter...


Step 2: process the data


Several programs available for this purpose:

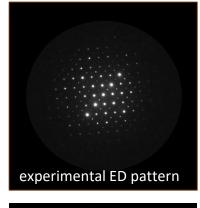
PETS2, XDS, CrysAlis PRO Dials, APEX4, eADT

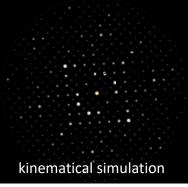
Step 3: solve the structure

Available software: SHELXS/T/D Superflip SIR XLENS

Step 4: refine the structure

Structure refinement = optimization of structure model against experimental data. Performed by least-squares minimization


$$S = \sum_{\mathbf{h}} w_{\mathbf{h}} \left(I_{obs}^{\mathbf{h}} - I_{calc}^{\mathbf{h}} \left(s, \{x, y, z, U\} \right) \right)^{2}$$
$$\Delta p = \left((J^{T}[w]J)^{-1} J^{T}[w] \right) \Delta I$$
$$J_{ij} = \frac{\partial I_{i}(p_{1} \dots p_{n})}{\partial p_{j}}$$


The key problem: Calculation of I_{calc}^{h} !

Option 1: Ignore multiple scattering => use kinematical diffraction theory => kinematical refinement

Option 2: Include multiple scattering => use dynamical diffraction theory => dynamical refinement

History of structure analysis by ED = history of fight with multiple scattering

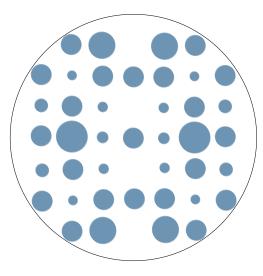
Kinematical approximation:

 $I_{\rm h} \propto |F_{\rm h}|^2$

Dynamical theory:

- 1) Find all reflections that contribute to diffraction
- 2) Build structure matrix A:

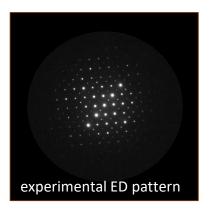
$$a_{ii} = 2KS_{\mathbf{g}_i}, i = 1, N_{beams}$$

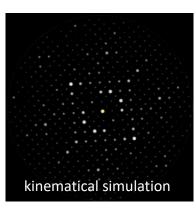

$$a_{ij} = U_{\mathbf{g}_i - \mathbf{g}_j}, i, j = 1, N_{beams}; i \neq j$$

3) Calculate scattering matrix S:

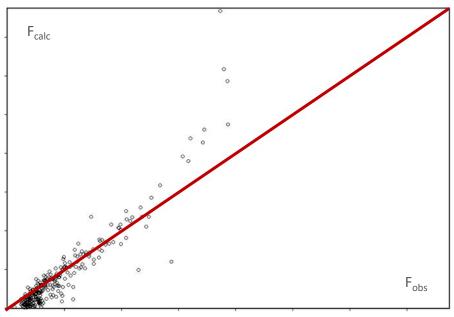
$$\mathbf{S} = \exp\left(\frac{2\pi i t \mathbf{A}}{2K_n}\right)$$

4) Calculate intensities from the first column of S:


$$I_{\mathbf{h}_i} = |s_{i1}|^2$$

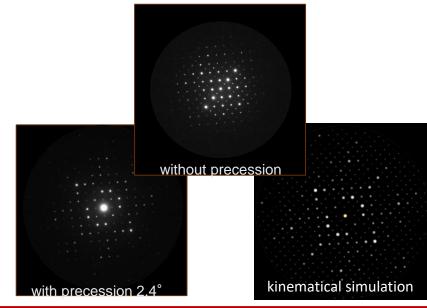


Dealing with the dynamical effects in the refinement


1) Ignore

- 2) Average out
- 3) Correct approximately
- 4) Take into account

The easiest aproach. Leads to the highest figures of merit. Potentially inacccurate structure models, low sensitivity to details.



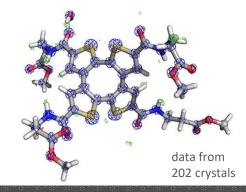
Dealing with the dynamical effects in the refinement

1) Ignore

2) Average out

- 3) Correct approximately
- 4) Take into account

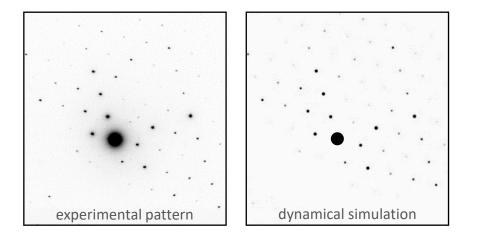
Averaging helps a lot.


Dynamical effects critically depend on the crystal orientation and can vary sharply.

However, averaging does not remove the effects completely, no matter how much data you average.

Averaging options:

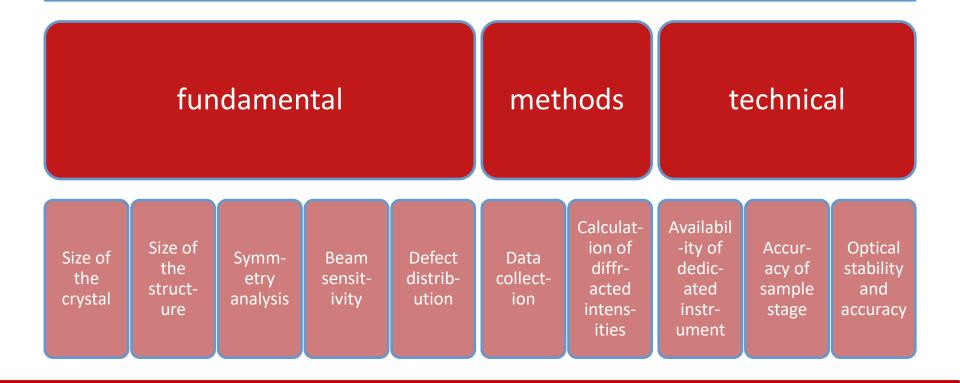
During data collection: continuous rotation or precession Post data collection: averaging several datasets.


Averaging a large number of crystals is particularly useful

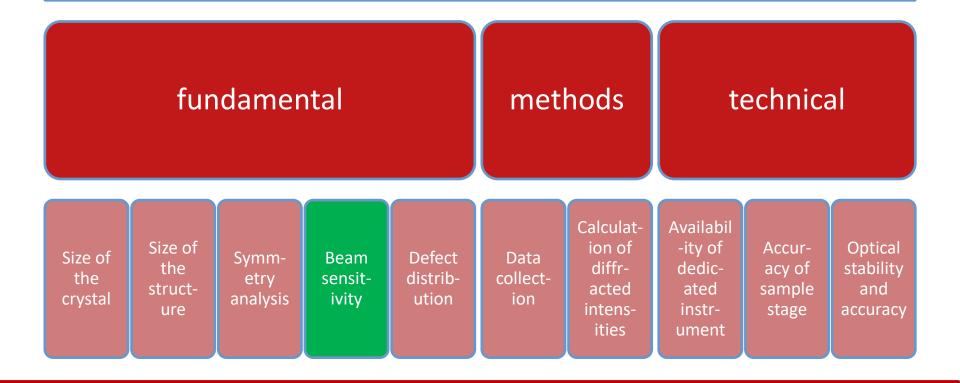
Grüne et al. (2021) Crystals 10, Smeets et al. (2019), Angew. Chem. Int. Ed. 58, Ueda et al. (2021), JACS 143

Dealing with the dynamical effects in the refinement

- 1) Ignore
- 2) Average out
- 3) Correct approximately
- 4) Take into account



Downside: long(ish) computing times


This approach is called **dynamical refinement** for short and gives the best results in most cases.

- 1) Refinement uses frame-based intensities
- 2) Filtering of reflections based on their proximity to Ewald sphere
- 3) I_{calc} is a function of thickness and crystal orientation
- 4) Integration still necessary to limit sensitivity to crystal imperfections

The main challenges

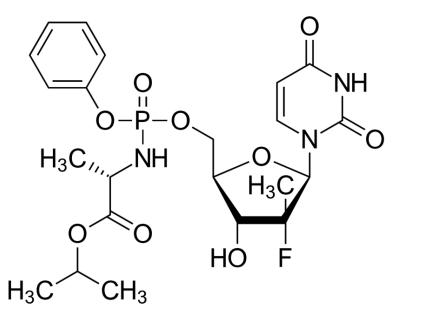
Beam sensitive materials

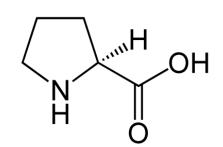
Beam sensitive materials

Electrons are less damaging than x-rays per single elastic event.

However, the probed volume is much smaller in electron diffraction.

Therefore, radiation damage is a much bigger issue for electron crystallography!

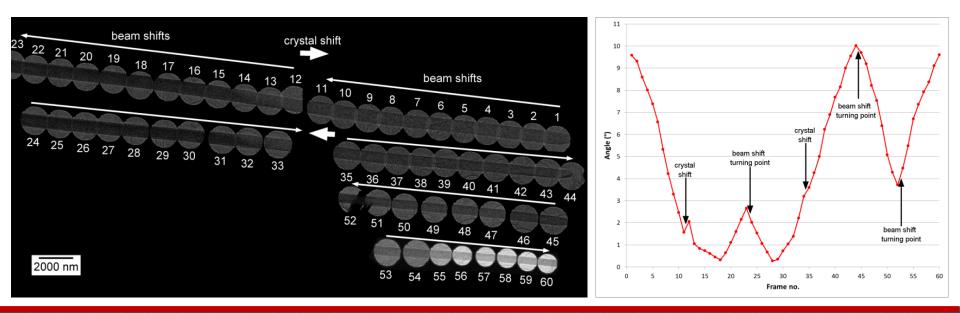

What is "beam sensitive"? Indicative limiting doses for the loss of crystallinity				
zeolites	>100 e/Ų			
MOFs	5-15 e/Ų			
protein crystals	1-10 e/Ų			
crystals of small organic molecules with hydrogen bonds	0.5-10 e/Ų			
crystals of small organic aliphatic molecules with van der Waals bonds only	0.01-0.5 e/Ų			

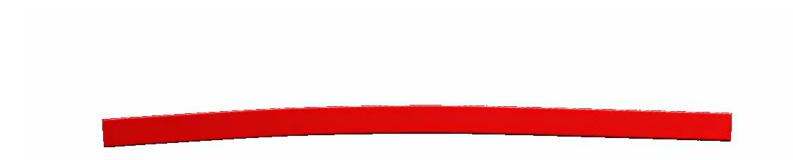

SOLUTION:

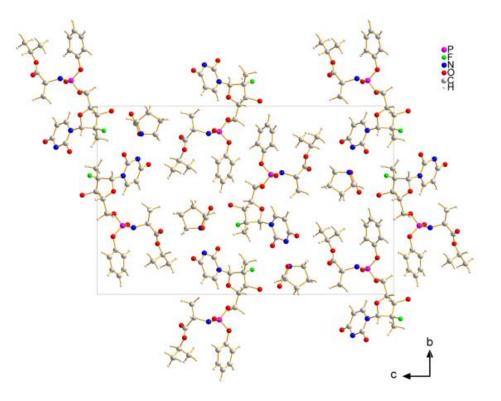
1) Use fast data collection with the modern sensitive direct detection cameras

2) Collect data on different parts of a large(r) crystal or use serial electron crystallography

a cocrystal of L-prolin and an anti-hepatitis drug (both chiral)

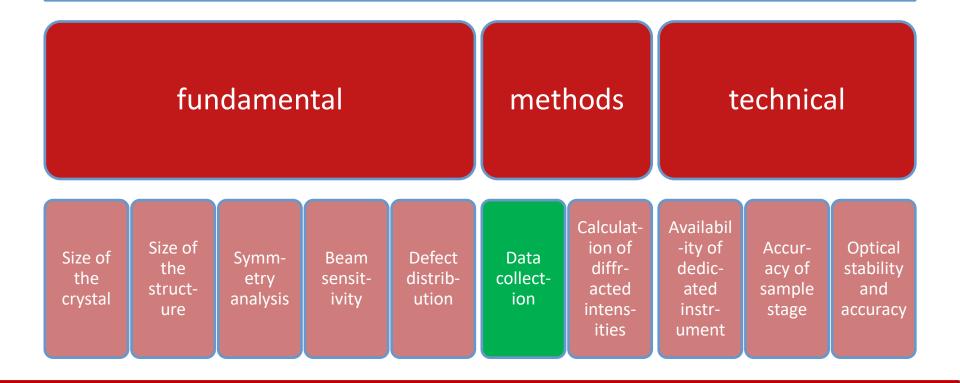



Sofosbuvir – antivirotic

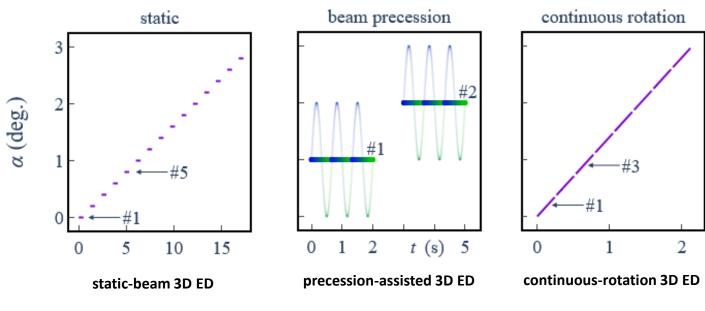

L-proline – amino acid

A cocrystal of L-prolin and an anti-hepatitis drug. Extremely beam-sensitive, most crystals deteriorate after <0.08 e/Å². Crystals form long ribbons.

A cocrystal of L-prolin and an anti-hepatitis drug. Extremely beam-sensitive, most crystals deteriorate after <0.08 e/Å². Crystals form long ribbons.


Formula: C₂₇H₃₈N₄O₁₁FP 44 independent non-H atoms

Space group P2₁2₁2₁

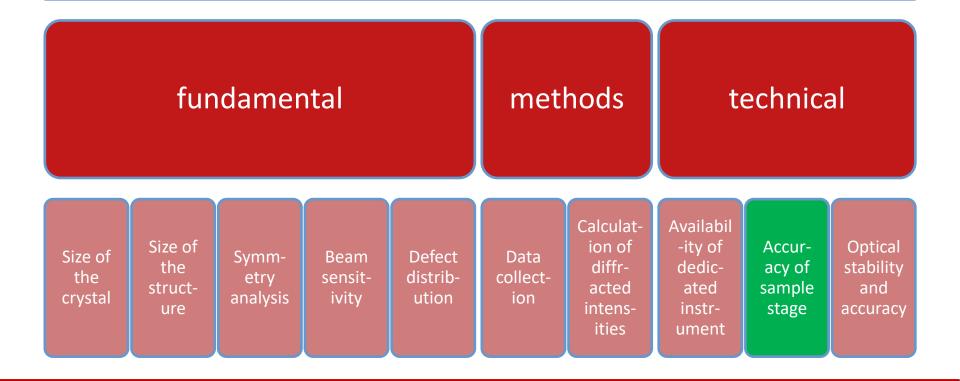

a=5.35Å, b = 19.60Å, c = 29.87Å Unit cell volume: 3127 Å³

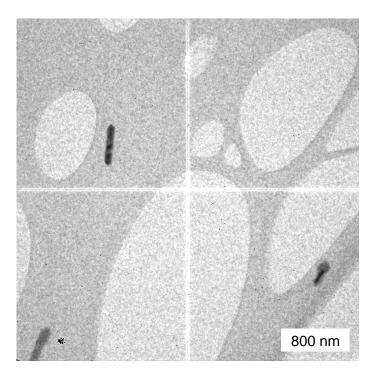
Kinematical refinement	R _{obs} = 19.7%
Dynamical refinement	R _{obs} = 9.7%

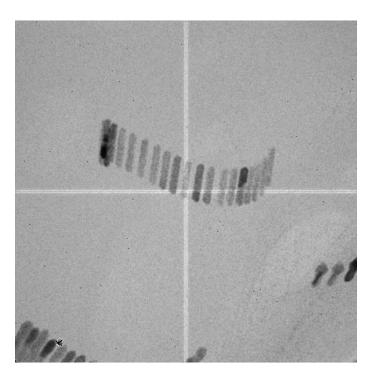
Data collection techniques

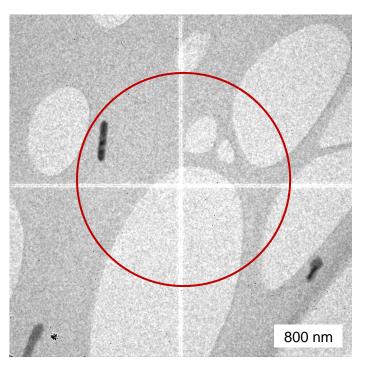
3D ED variants

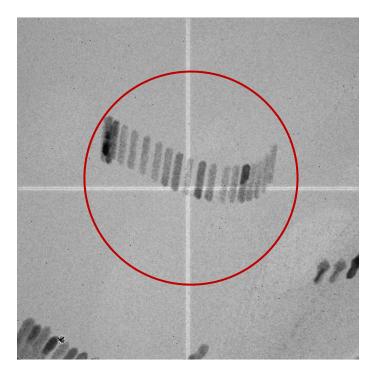
PEDT (Precession El. Diffr. Tomography) precession ADT cRED (continuous RED)

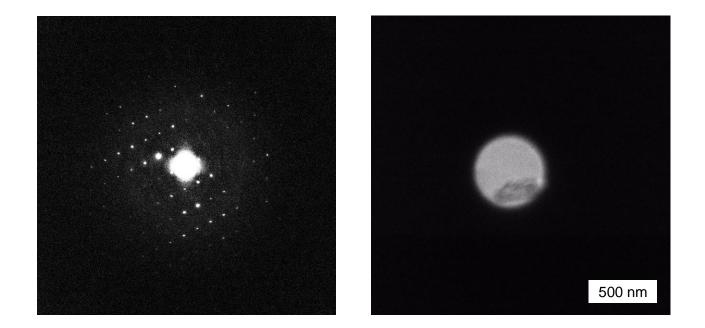

IEDT (integrated EDT)

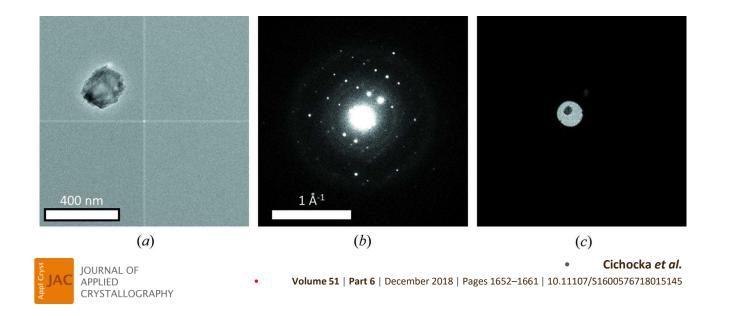

MicroED (current version)

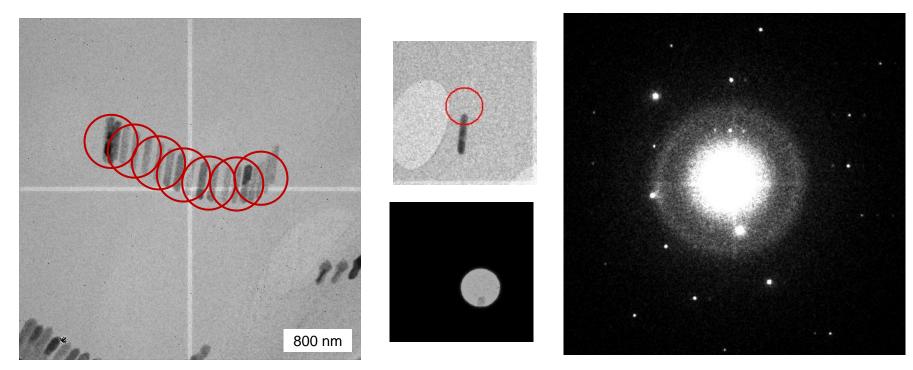

ADT/EDT


(Automated/Electron

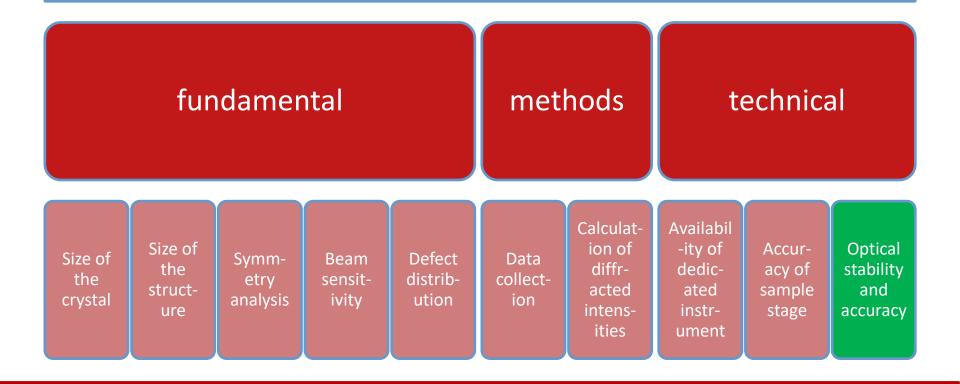

Diffraction Tomography)

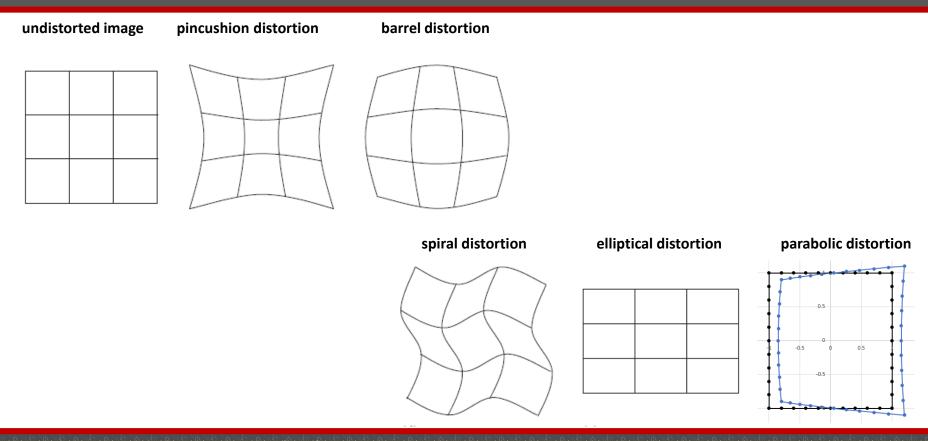





Option 1: use a large beam. Downside: high background, illumination of more than one crystal, varying illumination of large crystals

Option 2: switch from diffraction to imaging to track the crystal. Downside: lens hysteresis, incompatible with continuous rotation



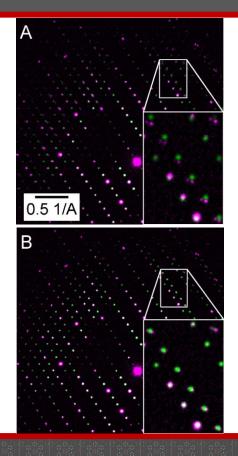

Option 3: defocus the diffraction to see the crystal in the central beam. Downside: lens hysteresis, gaps in the data

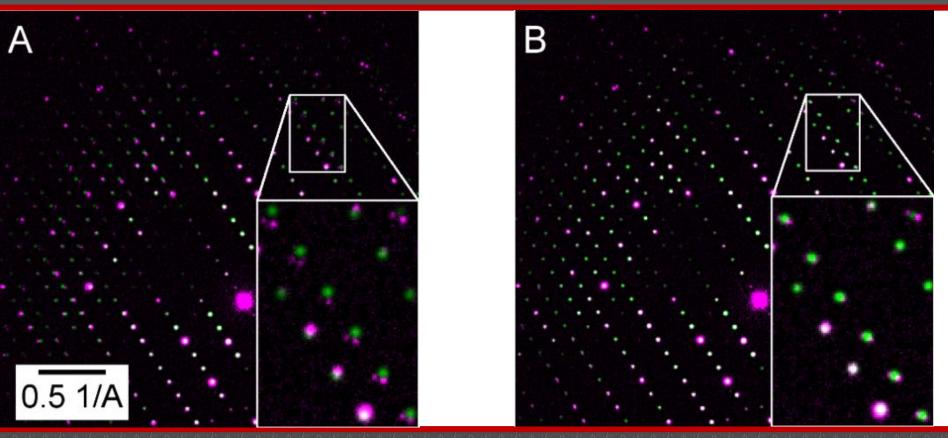
Option 4: pre-record the path of the crystal, then track it using the pre-recorded path. Downside: additional time (not much), additional illumination of the crystal (not much, may be avoided), potentially not perfectly reproducible path

Gemmi et al. (2015), J. Appl. Cryst. 48; Plana-Ruiz et al. (2020), Ultramicroscopy 211

Gian Carlo Capitani et al. Ultramicroscopy 106 (2006) 66-74

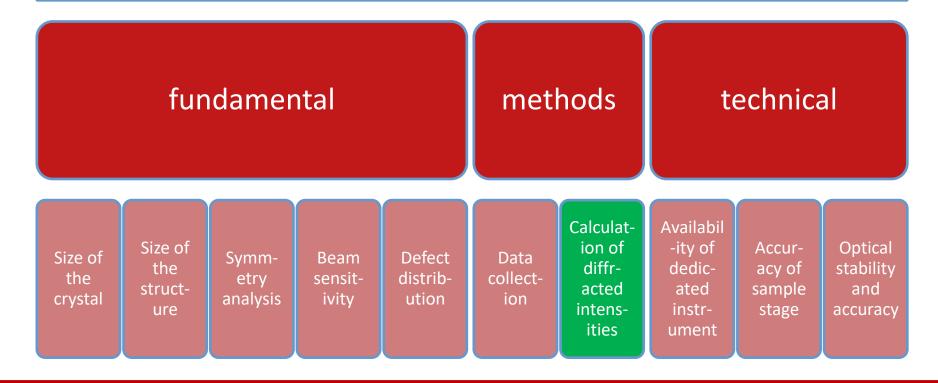
Example:


- Lutetium aluminium garnet, Bravais clas cF, a=11.9084 Å
- Main reason for distorted unit cell: elliptical distortion

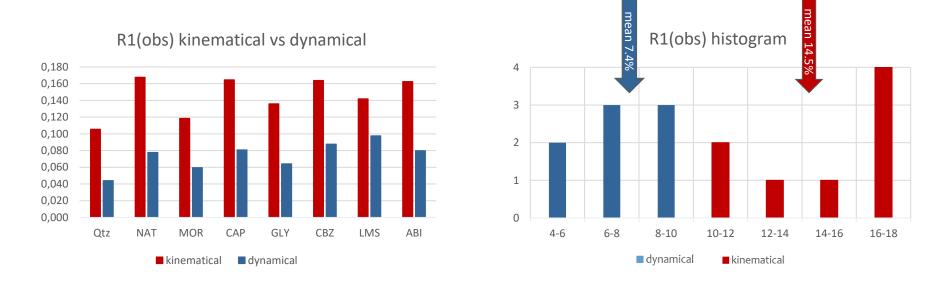

Without distortion correction:

	a (Å)	b (Å)	c (Å)	alpha (°)	beta (°)	gamma (°)
DS1	11.848(1)	11.858(3)	11.907(1)	90.21(1)	90.33(1)	89.97(1)
DS2	11.842(1)	11.881(2)	11.888(2)	89.77(2)	89.75(1)	89.75(1)
DS3	11.854(1)	11.863(3)	11.890(1)	89.80(1)	90.40(1)	90.11(1)

With distortion correction:


	a (Å)	b (Å)	c (Å)	alpha (°)	beta (°)	gamma (°)
DS1	11.909(1)	11.910(2)	11.908(1)	90.00(1)	90.00(1)	90.02(1)
DS2	11.908(1)	11.914(2)	11.908(2)	90.03(2)	90.00(1)	89.98(1)
DS3	11.907(1)	11.912(2)	11.909(1)	90.001(3)	90.00(1)	90.00(1)

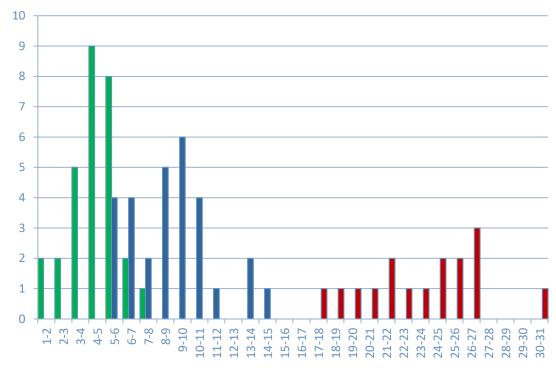
Brazda et al. (2023), IUCrJ


Calculation of intensities

지, 위에 가장 위에 가장 있어? 가장 위에 가 2011년 1월 201

The R-factor gap in elecron crystallography

8 structures carefully refined kinematically and dynamically from the same data

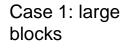

Dynamical: refined against unmerged data, but R-factors calculated on merged data for comparison with the kinematical factors.

The R-factor gap in elecron crystallography

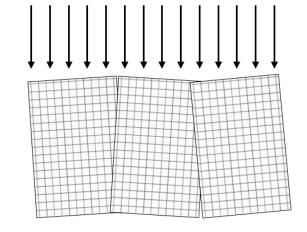
The fit to 3DED data is not as good as for x-ray data even for dynamical refinement.

Reason: diffraction comes from imperfect, often irregular crystals, but theory assumes perfect crystals

Solution: modify the refinement to account for crystal imperfections

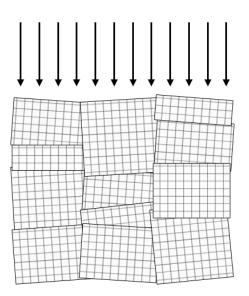


🔳 x-ray 🛛 🔳 dynamical 🖊 kinematical

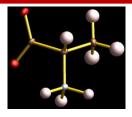

Mosaicity in the dynamical case

Aspects to consider:

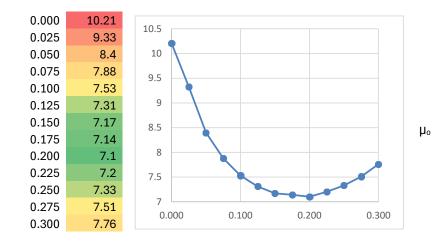
- The intensity depends on the crystal orientation
- Electrons passing from one mosaic block to the next "know"their history
- Column apoproximation may come to the rescue



Incoherent superposition of diffraction from individual blocks


Case 2: small blocks

Coherent superposition of diffraction from individual blocks in each column + incoherent superposition of individual columns



Mosaicity in the dynamical case

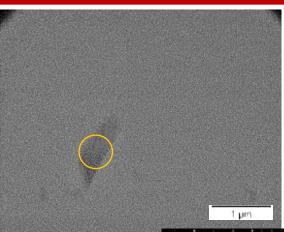
L-alanine: simple organic molecule orthorhombic, $P2_12_12_1$ relatively high mosaicity of 0.29° (from data reduction)

Test 1: Incoherent isotropic mosaicity

Test 2: Combined coherent and incoherent mosaicity ^{µi}

						P-1					
	0.000	0.025	0.050	0.075	0.100	0.125	0.150	0.175	0.200	0.225	0.250
0.00	10.18	9.33	8.40	7.95	7.58	7.36	7.25	7.18	7.27	7.32	7.51
0.05	10.02	9.15	8.33	7.90	7.54	7.32	7.22	7.16	7.24	7.29	7.49
0.10	9.62	8.84	8.15	7.78	7.49	7.28	7.18	7.13	7.21	7.26	7.46
0.15	9.07	8.48	7.96	7.66	7.41	7.22	7.14	7.09	7.16	7.23	7.42
0.20	8.57	8.16	7.78	7.54	7.32	7.16	7.10	7.08	7.14	7.23	7.42
0.25	8.24	7.94	7.63	7.42	7.24	7.11	7.08	7.07	7.12	7.24	7.44
0.30	7.94	7.71	7.47	7.32	7.17	7.09	7.09	7.10	7.15	7.30	7.52
0.35	7.69	7.54	7.38	7.29	7.19	7.16	7.16	7.18	7.25	7.43	7.67
0.40	7.56	7.47	7.37	7.31	7.28	7.31	7.31	7.34	7.43	7.64	7.85
$\mu_{comb} = \mu_i^2 + \mu_o^2 = 0.31^\circ$, very close to the experimental value											

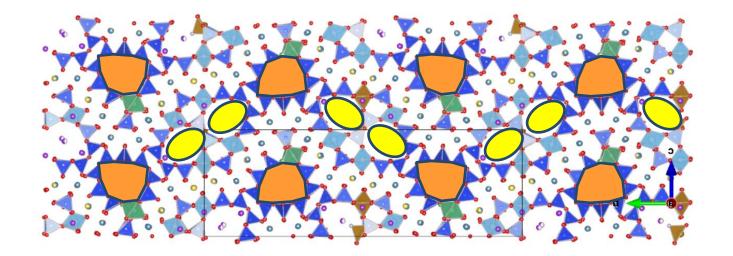
Example – eveslogite



Eveslogite, etc.

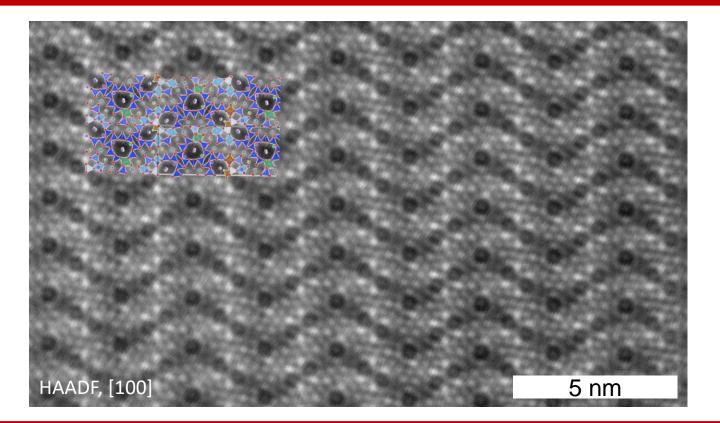
Fersman Gorge, Eveslogchorr Mt, Khibiny Massif, Murmansk Oblast, Russia

Eveslogite Eveslogchorr Mt, Khibiny Massif, Murmansk Oblast, Russia


Chemical Properties of Eveslogite

Formula:	(Na,K,Ca,Sr,Ba) ₄₈ [(Ti,Nb,Mn,Fe ²⁺) ₁₂ Si ₄₈ O ₁₄₄ (OH) ₁₂](F,OH,Cl) ₁₄
----------	---

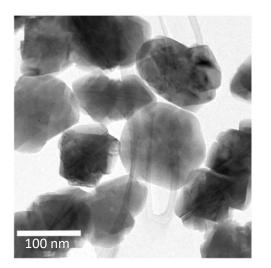
IMA Formula: (Ca,K,Na,Sr,Ba)₄₈(Ti,Nb,Fe,Mn)₁₂(OH)₁₂Si₄₈O₁₄₄(OH,F,Cl)₁₄


Example – eveslogite

space group <i>a</i>	<i>Р</i> 2 ₁ 14.1898 Å	~ 360 atoms in the a	asymmetric unit	Na K	
b	11 7701 Å			Ca	
С	15.9111 Å	115 842 reflections	$R_{obs} = 19.82$	Nb	
b	109.4677°	_		Ti	
V _{UC}	9530.171 Å ³	R _{int} = 17.24	R _{all} = 24.70	Si	

E. Götz, U. Kolb (TU Darmstadt), S.V. Krivovichev (University of Saint Petersburg), Marco Schowalter (University of Brehmen)

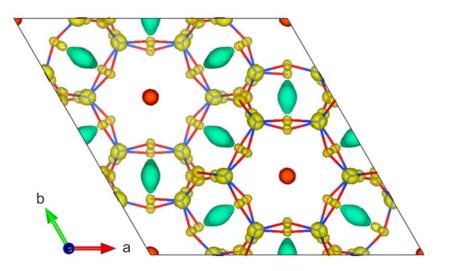
Example – eveslogite

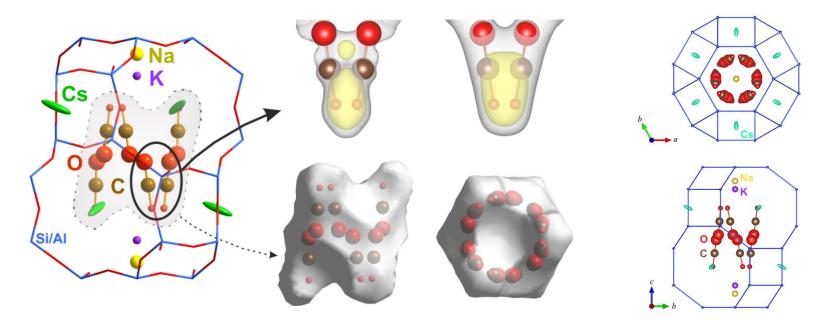


E. Götz, U. Kolb (TU Darmstadt), S.V. Krivovichev (University of Saint Petersburg), Marco Schowalter (University of Brehmen)

Example – CO₂-loaded zeolite

CO₂-loaded CHABAZITE

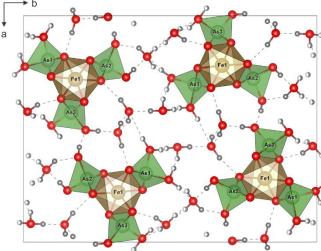

Synthesis of an industrially important zeolite in nanocrystalline form without OSDA. Extra-framework cations: Na+, K+, Cs+.

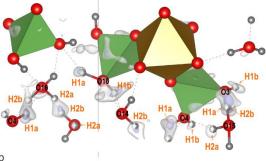

Chabazite has a very good CO₂ adsorption and selectivity towards CH₄.

Crystallographic question:

Can we locate the CO₂ molecules in the chabazite structure?

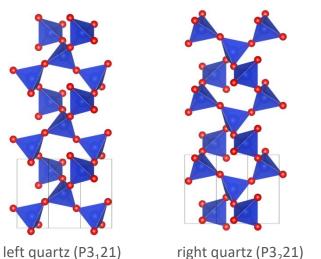
Example – CO₂-loaded zeolite


Theoretical maximum adsorption capacity: 9 CO_2 molecules per unit cellExperimental adsorption capacity: 8 CO_2 molecules per unit cellCationic composition is crucial for the capacity and selectivity of CO2 adsorption

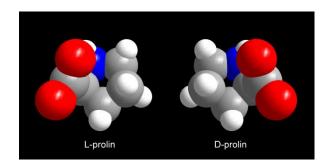

Example – disordered hydrogen atoms

Hydrogen disorder in kaatialaite Fe[AsO₂(OH)₂] 5H₂O

The structure of synthetic kaatialaite known (Boudjada & Guitel, 1981) but the hydrogen sites remained **undetected from X-ray single-crystal data**.


Map after dynamical refinement of the structure including the non-disordered hydrogen

22 independent hydrogen positions, out of them 12 disordered


Absolute structure and absolute configuration

Absolute structure is a specification of the orientation of a non-centrosymmetric crystal structure under the operation of inversion (Online dictionary of Crystallography)

A non-centrosymmetric crystal may or may not be composed of chiral species.

Absolute configuration is a specification of the spatial arrangement of atoms in a molecule containing *chiral centers*. Such molecules are not superimposable onto their mirror images. Different absolute configuration may mean (and often means) different biological function of the molecule.

Absolute configuration of molecules is most reliably and most often determined by determining the **absolute structure** of crystals containing the molecule.

Absolute structure and absolute configuration

Breaking Friedel's law

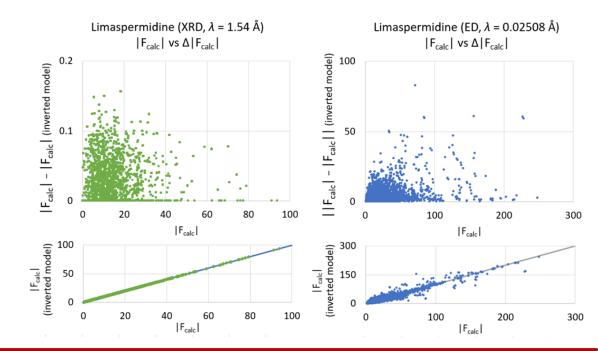
Friedel's law: In kinematical approximation, opposite structure factors have equal amplitudes: $|F_{-h}| = |F_h|$ **Consequence:** It is impossible to determine absolute structure from kinematical diffracted intensities

X-rays:

Resonant scattering shifts the phase of scattered photons from atoms -> Friedel's law does not hold exactly.

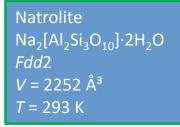
Strength of resonant scattering depends on the degree of noncentrosymmetricity, on the wavelength and atomic number.

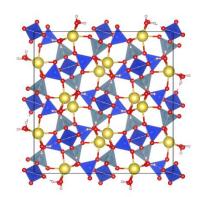
Light atoms have very low resonant scattering -> difficulties in determination of absolute structure of organic species.


Electrons:

Electron difraction is dynamical = coherent interference of more that one diffracted beam -> Friedel's law does not hold. In three-beam approximation:

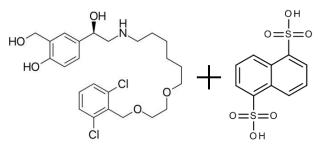
 $I_h - I_{-h} \propto F_h F_g F_{h-g} \sin \varphi$


where φ is the sum of structure factor phases


Strength of the breaking of Friedel's law depends only on the degree of non-centrosymmetricity (deviation of $\sin\varphi$ from 0) not on the atomic number. Absolute structure is equally easily determined for light and heavy atoms.

Absolute structure and absolute configuration

Absolute structure determination



Dynamical refinement:

Correct enantiomorph: Robs = 5.95% Wrong enantiomorph: Robs = 15.81%

z-score (confidence level): $\mathbf{36.13\sigma}$

vilanterol + 1,5-naphthalenedisulfonic acid

			Confidence	
Datas	R(obs) (%)	R(obs) (%)	sigma level (z-	Probability of
et	(R-form)	(S-form)	score)	<i>R</i> -form (%)
1	10.93	12.48	5.809	100.000
2	11.21	12.71	8.970	100.000
3	11.16	12.17	7.727	100.000
4	10.82	12.06	8.471	100.000
5	11.91	13.04	6.931	100.000
6	12.18	12.57	5.011	100.000
Comb.			17.336	100.000

Acknowledgment

Institute of Physics: Paul B. Klar Petr Brázda Gwladys Steciuk Mariana Klementová Kamil Červený Cinthia A. Correa Jaromíra Hrdá Markéta Jarošová Malgorzata Cabaj Malak Khouchen

Martin Jelínek Yasar Krysiak Václav Petříček **Stockholm University:** Hongyi Xu Xiaodong Zou

IIT Pisa Mauro Gemmi Iryna Andrusenko

JGU Mainz Ute Kolb Emilia Götz

CNRS Caen Philippe Boullay Svetlana Mintova

& GAČR

GRANTOVÁ AGENTURA ČESKÉ REPUBLIKY

T A Č R Technologická agentura České republiky

- Structure determination by 3D electron diffraction methods has become an almost routine method applicable to all classes of materials
- ✓ Many applications can be done on almost any commercial TEM
- ✓ Optimized TEM setup and software customizations and needed for the best results
- Dedicated instruments are available on the market, making the method much more easily accessible
- Many challenges remain. There is a potential for further significant improvement of the method
- Take-home-message: 3D ED can solve many hard problems in material science. Do not lose time attacking these problems with *"familiar"* methods, spend it rather on learning 3D ED (or contact someone to help you)...